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Abstract
We investigate the class D of queries that distribute over components. These are the queries

that can be evaluated by taking the union of the query results over the connected components
of the database instance. We show that it is undecidable whether a (positive) Datalog program
distributes over components. Additionally, we show that connected Datalog¬ (the fragment of
Datalog¬ where all rules are connected) provides an effective syntax for Datalog¬ programs that
distribute over components under the stratified as well as under the well-founded semantics. As
a corollary, we obtain a simple proof for one of the main results in previous work [19], namely,
that the classic win-move query is in F2 (a particular class of coordination-free queries).
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1 Introduction

A Datalog program is called connected when the graph of every rule is connected; here, the
graph of a rule views the variables of the rule as vertices and each positive body atom as a
hyperedge. For instance, the canonical program computing the transitive closure of a binary
relation

TC(x, y)← E(x, y)
TC(x, y)← E(x, z), TC(z, y)

is connected, while the program

A(x, y)← E(x, z), E(y, z′)

is not as E(x, z) and E(y, z′) do not share a common variable. The definition of connectedness
can also be extended to Datalog¬ (with negation), where the negative body atoms of a rule
do not contribute to the graph of this rule. While connected Datalog programs are very
natural, as a logic they are not well-understood. The earliest reference to connected Datalog
is by Guessarian [11] who obtained a decidability result for boundedness of a subclass of

∗ Postdoctoral Fellow of the Research Foundation – Flanders (FWO)
† PhD Fellow of the Research Foundation – Flanders (FWO)

© Tom J. Ameloot, Bas Ketsman, Frank Neven, and Daniel Zinn;
licensed under Creative Commons License CC-BY

18th International Conference on Database Theory (ICDT’15).
Editors: Marcelo Arenas and Martin Ugarte; pp. 1–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICDT.2015.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Datalog Queries Distributing over Components

connected Datalog programs. Ameloot et al. [4] obtained that every connected stratified
Datalog¬ program distributes over components, that is, the program can be evaluated by
taking the union of the query results over the connected components of the database instance
(cf., Section 3 for a formal definition). We denote by D the class of queries that distribute
over components.

In this paper, we investigate the relationship between connected Datalog¬ and the class
D. This investigation is motivated by a general theme in model theory that considers
the relationship between syntactic and semantic properties of logic. In the context of
Datalog, results of this type have for example been obtained for the class of queries preserved
under homomorphisms, denoted by H. For instance, Feder and Vardi [10] showed that all
queries in semi-positive Datalog¬ that are preserved under homomorphisms can already be
expressed in Datalog itself. That is, semi-positive Datalog¬ ∩ H = Datalog. Dawar and
Kreutzer [9] showed that the latter result can not be extended to least fixed-point logic
(LFP): LFP ∩H 6⊆ Datalog. The main result of this paper is that both under the stratified
as well as under the well-founded semantics, we have connected Datalog¬ = Datalog¬ ∩D.
Additionally, we show that, even when we forbid negation in rules, it is undecidable whether
a given (positive) Datalog program is in D . Our main result therefore shows that connected
Datalog¬ is an effective syntax for queries in Datalog¬ ∩D (both under the stratified and
under the well-founded semantics).

Apart from the model theoretic motivation mentioned above, the results in this paper also
provide more insight in some of the recent results concerning coordination-free evaluation.
Datalog has attracted quite a bit of attention as a declarative programming language for
distributed systems, see e.g. [14, 1, 16]. In fact, Hellerstein [12] argues that the theory of
declarative database query languages can provide a foundation for the next generation of
parallel and distributed programming languages. In this respect, programs (queries) are
specified on a logical level over a global schema and are computed by multiple computing nodes
over which the input database is distributed. These nodes can perform local computations
and communicate asynchronously with each other via messages. The model operates under
the assumption that messages can never be lost but can be arbitrarily delayed. As the
global barriers raised by the need for synchronization are an inherent source of inefficiency
in such systems, a number of researchers started investigating classes of queries that can be
evaluated in a coordination-free manner [8, 19, 5, 3, 4]. In a coordination-free evaluation,
communication between nodes can only transfer data and can not be used to coordinate.1
Zinn, Green, and Ludäscher [19] introduced various classes of coordination-free queries: F0,
F1, and F2. Membership of the classical non-monotonic win-move query in F2 is one of
the main results in [19], where the authors describe a distributed query evaluation strategy
that is specific for the win-move query. The results in this paper provide a more in-depth
explanation of that result. Indeed, letting V denote the class of so-called value-driven queries
that have nonempty output only on inputs containing values, we explain that every query in
D ∩V is also in the class F2. This implies that every connected Datalog¬ program in V is
in F2 as well. Since win-move is a connected Datalog¬ program, and is value-driven, it then
follows immediately that win-move is in F2.

In this paper, we also briefly discuss semi-connected Datalog¬ programs, a relaxation of
connected Datalog¬ introduced in previous work [4]: under the well-founded semantics, the
queries expressible by semi-connected Datalog¬ programs remain in the class F2.
Outline. This paper is organized as follows. Section 2 presents preliminaries on databases,

1 We refer to [5, 4] for a formal definition of coordination-freeness.
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and on Datalog¬ together with its stratified and well-founded semantics. Section 3 recalls
distribution over components; additionally, we present an undecidability result and we discuss
the relationship with weaker forms of monotonicity. Next, Section 4 discusses a syntactic
restriction of Datalog¬, called connected Datalog¬; and, we show that under the stratified
semantics, this restriction captures the queries that both distribute over components and that
are expressible in Datalog¬. This capturing result is subsequently generalized in Section 5 to
the well-founded semantics. Section 6 briefly discusses how a relaxation of the connectedness
restriction behaves under the well-founded semantics. We conclude in Section 7. Many of
the technical proofs are moved to the appendix due to space limitations. Proof sketches are
given in the main body.

2 Preliminaries

2.1 Database Basics
A (database) schema σ is a finite set of pairs (R, k), also denoted as R(k), where R is a
relation name and k ∈ N its associated arity. We assume an infinite universe dom of atomic
data values. A fact is a pair (R, ā), also denoted as R(ā), where R is a relation name and
ā is a (possibly empty) tuple of values over dom. We say that fact R(a1, . . . , ak) is over
database schema σ if R(k) ∈ σ. If k = 0 then the fact is called nullary. A (database) instance
I over σ is a finite set of facts over σ. The active domain of a fact f , denoted adom(f), is
the set of values occurring in f . For an instance I, we define adom(I) =

⋃
f∈I adom(f). For

a subset σ′ ⊆ σ, we write I|σ′ to denote the maximal subset of I that is over σ′.
A query Q over input schema σ1 and output schema σ2 is a function that maps instances

over σ1 to instances over σ2. We consider only queries that are generic: these queries are
independent of the concrete data values. More formally, a query Q is generic if for all inputs
I, and all permutations ρ of dom, we have ρ(Q(I)) = Q(ρ(I)).

2.2 Datalog with Negation
We recall here the language Datalog with negation [2], denoted Datalog¬.

Atoms and rules

We assume a separate universe var of variables. An atom is a pair (R, ū), also denoted as
R(ū), where R is a relation name and ū is a (possibly empty) tuple of variables over var.
We say that an atom R(u1, . . . , uk) is over a database schema σ if R(k) ∈ σ. A rule ϕ is a
tuple (headϕ, posϕ,negϕ) where headϕ is an atom, and posϕ and negϕ are both sets of atoms.
We call headϕ the head; and we call posϕ and negϕ respectively the positive body atoms and
the negative body atoms. We only consider rules ϕ where each variable in headϕ and negϕ
also occurs in posϕ. We say that ϕ is over a database schema σ when all its atoms are
over σ. A rule ϕ may also be written in the conventional syntax, e.g., when headϕ = T (ū),
posϕ = {R1(u1), . . . , Rm(um)} and negϕ = {S1(v1), . . . , Sn(vn)} then we may write ϕ as:

T (ū)← R1(u1), . . . , Rm(um),¬S1(v1), . . . ,¬Sn(vn).

The ordering of atoms to the right of the arrow is arbitrary.
A valuation for rule ϕ is a function V that maps each variable in ϕ to a value in dom.

Applying V to atoms of ϕ results in facts: we substitute each variable u by V (u). We say
that V is satisfying for ϕ on an instance I, when V (posϕ) ⊆ I and V (negϕ) ∩ I = ∅. In that
case, the pair (ϕ, V ) is said to derive the fact V (headϕ) on instance I.

ICDT’15



4 Datalog Queries Distributing over Components

Programs

A Datalog program with negation over a schema σ is a set P of rules over σ. The class of
such programs is denoted by Datalog¬. For a Datalog¬ program P , we also write sch(P ) to
denote the (minimal) schema that P is over. We define idb(P ) ⊆ sch(P ) as the relations
of sch(P ) that appear in rule heads. We also define edb(P ) = sch(P ) \ idb(P ).2 Intuitively,
edb(P ) can be seen as the input relations for P . Various semantics can be given to Datalog¬

programs. In this paper we use the stratified semantics and the well-founded semantics.

2.3 Stratified Semantics
We recall the stratified semantics of Datalog¬ [2].

Semi-positive programs

We call a Datalog¬ program P semi-positive when its rules only apply negation to relations
in edb(P ). More formally, for all rules ϕ in P , the set negϕ is over edb(P ). The semantics of
such a program P can be defined as follows. Consider the following function TP , called the
(inflationary) immediate consequence operator of P : TP maps any instance J over sch(P ) to
J ∪ A where A = {V (headϕ) | ϕ ∈ P, V is a satisfying valuation for ϕ on J}. Now, for an
input I over edb(P ), consider the following infinite sequence of instances: I0, I1, I2, . . . where
I0 = I and Ii = TP (Ii−1) for all i ≥ 1. Because TP only adds facts, and is limited to adom(I),
there is an index k such that Ik = Ik+1, i.e., there is a fixpoint. The output of P on I is
defined as this fixpoint.

Syntactic stratification

Let P be a Datalog¬ program. We call P syntactically stratifiable (or simply stratified) if we
can partition the rules of P into a sequence of Datalog¬ subprograms P1, . . . , Pn such that:

Rules with the same head relation occur in the same subprogram;
In each subprogram Pi, relations R of positive body atoms either belong to edb(P ) or all
rules computing R must be in some subprogram Pj with j ≤ i; and,
In each subprogram Pi, relations R of negative body atoms either belong to edb(P ) or all
rules computing R must be in some subprogram Pj with j < i.

Each subprogram is also called a stratum. Note that negation is only applied to relations
computed in strictly lower strata. So, each stratum by itself is a semi-positive program. Given
a syntactic stratification P1, . . . , Pn, the output of P on an input I over edb(P ), denoted
P (I), is defined as Pn(Pn−1(. . . (P1(I)) . . .)), i.e., we first apply stratum P1, then stratum
P2, etc. All syntactic stratifications give the same result [2].

We say that a query Q with input schema σ1 and output schema σ2 is computed by a
stratified Datalog¬ program P if for all inputs I for Q, we have Q(I) = P (I)|σ2

using the
stratified semantics of P .

2.4 Well-founded Semantics
Let P be a Datalog¬ program. We define the well-founded semantics of P using the alternating
fixpoint computation [18].

2 The abbreviations “idb” and “edb” respectively stand for intensional schema and extensional schema.
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Negation on assumptions

Let ϕ be a rule in P , and let J be an instance over sch(P ). A valuation V for ϕ is said
to be J-neg-satisfying for ϕ on an instance I if V (posϕ) ⊆ I and V (negϕ) ∩ J = ∅. In
contrast to the semantics of semi-positive programs from above, J-neg-satisfaction tests
negative body atoms against the fixed database instance J . Next, consider the following
function T JP , called the (inflationary) immediate consequence operator of P with assumptions
J : function T JP maps each instance K over sch(P ) to K ∪ A where A = {V (headϕ) |
ϕ ∈ P, V is a J-neg-satisfying valuation for ϕ on K}. Now, for an instance I over sch(P ),
consider the following infinite sequence of instances: I0, I1, I2, . . . where I0 = I and Ii =
T JP (Ii−1) for all i ≥ 1. Because T JP only adds facts, and is limited to adom(I), there is an
index k such that Ik = Ik+1, i.e., there is a fixpoint, denoted as T̂ JP,I .

Antimonotone operator

Let I be an input over edb(P ). Let ΓP,I denote the function that maps each instance J over
sch(P ) to T̂ JP,I . Note that for any two instances J1 and J2 with J1 ⊆ J2, the J2-neg-satisfying
valuations are also J1-neg-satisfying, so ΓP,I(J2) ⊆ ΓP,I(J1). For this reason, we call ΓP,I
antimonotone. We similarly see that ΓP,I(ΓP,I(J1)) ⊆ ΓP,I(ΓP,I(J2)), so function ΓP,I ◦ ΓP,I
is monotone. Next, consider the following infinite sequence of instances: I0, I1, I2, . . . where
I0 = ∅ and Ii = ΓP,I(Ii−1) for all i ≥ 1.3 Since ΓP,I ◦ ΓP,I is monotone, the subsequence
I0, I2, I4, . . . converges to a fixpoint, i.e., there is a number k ≥ 0 such that I2k = I2k+2.4
This implies that index 2k + 1 is a fixpoint for the subsequence with uneven indices, i.e.,
I2k+1 = I2k+3. Now, the well-founded semantics of P on I produces both a set of true facts
and a set of true or undefined facts, denoted as Pt(I) and Pt∨u(I) respectively. Formally, they
are defined as Pt(I) = I2k and Pt∨u(I) = I2k+1. Intuitively, for the facts in Pt∨u(I) \ Pt(I),
we can not compute whether they are definitely present in the output or definitely absent
from the output. So, the well-founded semantics essentially assigns one of three truth values
to facts over sch(P ): true, false, and undefined.

We say that a query Q with input schema σ1 and output schema σ2 is computed by P
under the well-founded semantics if for all inputs I for Q, we have Q(I) = Pt(I)|σ2

.

I Example 1. We recall the well-known win-move Datalog¬ program P [2]:

win(x)← move(x, y),¬win(y).

The win-move program represents a game as follows. The input relation move is viewed as a
graph. A game on this graph starts with one node x of the graph marked with a flag. Next,
two players, called 1 and 2, take turns to move the flag from the currently flagged node to
one of its successor nodes, and player 1 always gets the first turn. A player looses when
there are no successor nodes during his or her turn. Now, we say that player 1 has a winning
strategy at node x, if player 1 can always force a win when starting at node x. That is, no
matter how player 2 moves, eventually, player 1 will move the flag to a node where player 2
cannot move anymore.

3 There is an alternating fixpoint: the inner fixpoint is given by ΓP,I(J) = T̂ J
P,I , the outer fixpoint is

obtained by iterating ΓP,I . Applying ΓP,I to an underestimate yields an overestimate and vice versa.
4 To see this, we start with I0 = ∅ ⊆ I2. Next, since ΓP,I ◦ΓP,I is monotone, we have I2 = ΓP,I ◦ΓP,I(I0) ⊆

ΓP,I ◦ΓP,I(I2) = I4. This reasoning can be repeated to see I4 ⊆ I6, etc. Since derived facts are restricted
to adom(I), we eventually arrive at a fixpoint.

ICDT’15



6 Datalog Queries Distributing over Components

The relation win computes the nodes for which player 1 has a winning strategy. For
example, letting σ = {win(1)}, on the input I = {move(a, b),move(b, a),move(a, c)}, we
have Pt(I)|σ = Pt∨u(I)|σ = {win(a)}; the winning strategy for player 1 is to move the
flag from a to c. As another example, consider the instance J = I ∪ {move(c, d)}. We
have Pt(J)|σ = {win(c)} and Pt∨u(J)|σ = {win(a),win(b),win(c)}. Facts in Pt∨u(J) \Pt(J)
represent drawn positions, that is, neither player can force a win and the game goes on
indefinitely. The absence of win(d) indicates that player 1 has no winning strategy at node d
(because player 1 can not make a move there).

The win-move program is non-monotone: win(a) ∈ Pt(I) but win(a) /∈ Pt(J). J

3 Distribution over Components

We recall distribution over components [4]. We call an instance J connected if for all values
a, b ∈ adom(J), there exists a sequence f1, . . . ,fn of facts in J such that a ∈ adom(f1),
b ∈ adom(fn), and adom(f i) ∩ adom(f i−1) 6= ∅ for all i ∈ {2, . . . , n}. Possibly n = 1.
Intuitively, any two values are connected by at least one chain of facts, where subsequent
facts share at least one value.5

Now, for an instance I, we call a subinstance J ⊆ I a component of I if (i) J includes all
nullary facts of I; (ii) J is connected and is maximal with this property in I. This implies that
adom(J)∩adom(I\J) = ∅. We write co(I) to denote the set of components of I.6 For example,
the components of I = {R(a, b), R(b, c), S(c), T (d), U( )} are {R(a, b), R(b, c), S(c), U( )} and
{T (d), U( )}.

We say that a query Q distributes over components if for all inputs I for Q we have
Q(I) =

⋃
J∈co(I)Q(J), i.e., the centralized output of Q on I is precisely obtained when we

parallelize Q over the components of I. Let D denote the class of queries that distribute
over components.

3.1 Undecidability
To gain additional insight into distribution over components, we consider decidability of this
semantical property for the concrete setting of Datalog¬. First, we call a Datalog¬ program
positive if its rules contain no negative body atoms. To denote the class of such programs,
we simply write ‘Datalog’. For evaluating Datalog programs, we will assume the intuitive
semantics of semi-positive Datalog¬ programs (cf. Section 2.3). Interestingly, despite the
restriction,

I Theorem 2. Membership in D is undecidable for queries computable by Datalog programs.

Proof. First, from previous work by Shmueli [17], we know that it is impossible to decide
whether two Datalog programs P1 and P2, each with a single non-nullary output relation,
are equivalent. This problem was shown to be undecidable by a reduction from equivalence
of context-free grammars. We point out that this reduction actually constructs connected
programs (see Section 4.1 for a formal definition). So, equivalence, and thus containment,
of two connected Datalog programs, each with a single non-nullary output relation, is

5 Equivalently, one could demand that the Gaifman graph of J is connected, where we view adom(J) as
the set of vertices and each fact of J as a hyperedge.

6 The nullary facts are given to each component because there is no natural preference for how to distribute
these facts to any particular component.
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undecidable. Our proof below reduces this latter containment problem to deciding whether a
Datalog program distributes over components.

Let P1 and P2 be two connected Datalog programs with the same edb schema σ1 and
each having one k-ary intended output relation, denoted A1 and A2 respectively, where
k ≥ 1. Both programs may use auxiliary idb relations, but for convenience we assume that
idb(P1) and idb(P2) have no relation names in common. We define the following auxiliary
program P ′, where T and S are relation names not yet used in P1 and P2, and all variables
are assumed to be pairwise different:

T (ū)← A1(ū), S(z).
T (ū)← A2(ū).

Now consider the program P ∗ = P1 ∪ P2 ∪ P ′. Note that edb(P ∗) = σ1 ∪ {S(1)}. Although
program P ∗ is positive, it is not connected due to the first rule of P ′. The S-atom plays
the role of a guard: relation A1 flows into relation T if S is nonempty. Let Q be the query
computed by P ∗ over output schema σ2 = {T (k)}. To finish the proof, we show that Q ∈ D
if and only if P1 is contained in P2.

Suppose that P1 is contained in P2. First, we define program P c as P ∗ but without the
first rule of P ′. Note that P c is connected. For any input I over edb(P ∗), since A1(ā) ∈ P1(I)
implies A2(ā) ∈ P2(I) by containment, we have P c(I)|σ2

= P ∗(I)|σ2
= Q(I). And since P c

is a connected program, we can apply Proposition 6 (in Section 4.2), to know Q ∈ D.
Suppose that P1 is not contained in P2. In particular, there is some input I over σ1 for

which there is a tuple ā with A1(ā) ∈ P1(I) and A2(ā) /∈ P2(I). Letting d be a new value
outside adom(I), we define the instance I ′ = I ∪ {S(d)}. During the computation of P ∗(I ′),
the first rule of subprogram P ′ has access to A1(ā) and S(d), giving T (ā) ∈ P ∗(I ′). But,
the first rule of P ′ can never be satisfied on any J ∈ co(I ′), because by choice of value d,
component J does not simultaneously contain non-nullary facts over σ1 and {S(1)}. Moreover,
for any J ∈ co(I ′), we have A2(ā) /∈ P2(J): since program P2 is unaware of S-facts, we have
A2(ā) /∈ P2(I ′) and monotonicity of P2 implies that A2(ā) can not be produced on any subset
of I ′. Overall, we have T (ā) /∈ P ∗(J) for all J ∈ co(I ′). Hence, Q /∈ D. J

We now readily observe that:

I Corollary 3. Membership in D is undecidable for queries computable by stratified Datalog¬

programs.

3.2 Weaker Forms of Monotonicity
We briefly relate D to the classesMdistinct andMdisjoint [4]. The classMdistinct consists of
the domain-distinct-monotone queries: for such queries Q, we have Q(I) ⊆ Q(I ∪ J) for all
instances I and J where each f ∈ J satisfies adom(f) * adom(I).7 Intuitively, Q behaves
monotonically when adding facts that contain at least one new value.

We observe that D *Mdistinct: over a schema {R(1), S(2)}, consider the query Q1 =
R − π1(S), where π1 projects onto the first component. To see Q1 ∈ D, note that when
forming components, the S-facts are always grouped together with those R-facts they subtract
from. To see Q1 /∈Mdistinct, consider the instances I = {R(a)} and J = {S(a, b)}; note that
Q1(I) * Q1(I ∪ J).

7 This implies that J contains no nullary facts.

ICDT’15



8 Datalog Queries Distributing over Components

We also observe thatMdistinct * D: over a schema {R(1), S(1)}, consider the query Q2
that computes the cross product T = R× S. Query Q2 is monotone, hence Q2 ∈Mdistinct.
To see Q2 /∈ D, consider the instance I = {R(a), S(b)}. On the full input I, query Q2
produces T (a, b), but this fact is not produced on component {R(a)} nor on component
{S(b)}.

Next, the class Mdisjoint consists of the domain-disjoint-monotone queries: for such
queries Q, we have Q(I) ⊆ Q(I ∪ J) for all instances I and J where J contains no nullary
facts and adom(I) ∩ adom(J) = ∅.8

We observe that D *Mdisjoint: over a schema {R(1)}, take the query Q3 that outputs
true (in a nullary relation T ) if R = ∅. We see that Q3 ∈ D: if there are multiple
components in an input I then each component contains one R-fact, implying that relation
T remains empty on each component, giving the same result as the centralized execution
Q3(I). Also, Q3 /∈Mdisjoint, because on the instances I = ∅ and J = {R(a)}, we have
Q(I) = {T ( )} * Q(I ∪ J) = ∅.

We also observe that Mdisjoint * D: take the same query Q2 from above. Since
Mdistinct ⊆Mdisjoint, we have Q2 ∈Mdisjoint. But Q2 /∈ D as shown above.

When we exclude queries like Q3, the remaining queries of D are included inMdisjoint.
Formally, we call a query Q value-driven if for all inputs I for Q with adom(I) = ∅, we
have Q(I) = ∅. Intuitively, the query produces nothing in absence of values. Let V denote
the class of such queries. We observe that D ∩ V ⊆Mdisjoint: for a query Q ∈ D ∩ V ,
(i) for an input I with adom(I) = ∅, we have Q(I) = ∅ ⊆ Q(I ∪ J) for all instances
J ; and (ii) for an input I with adom(I) 6= ∅, and an instance J without nullary facts
and with adom(I) ∩ adom(J) = ∅, we have co(I) ⊆ co(I ∪ J), so using Q ∈ D, we see
Q(I) =

⋃
K∈co(I)Q(K) ⊆

⋃
L∈co(I∪J)Q(L) = Q(I ∪ J).

4 Connected Datalog

We can not decide for queries computed by stratified Datalog¬ programs whether they
distribute over components (Corollary 3). However, in this section we show there is a
fragment of stratified Datalog¬ that captures precisely the queries of D expressible in
stratified Datalog¬.

4.1 Connected Syntax
We recall the language of connected Datalog¬, denoted con-Datalog¬ [4]. We extend the
definition in this previous work, however, to explicitly deal with nullary relations. Nullary
relations allow more programming flexibility, and they allow boolean computation in absence
of input values, e.g., when only a set of nullary facts is given.

As notational convenience, for an atom a we write var(a) to denote the set of variables
occurring in a. Also, for a rule ϕ we write var(ϕ) to denote the set of variables in ϕ. Now,
very similarly to connected database instances, we say that a rule ϕ is connected when for
any two variables u, v ∈ var(ϕ) there is a sequence of atoms a1, . . . ,an in posϕ such that
u ∈ var(a1), v ∈ var(an), and var(ai) ∩ var(ai−1) 6= ∅ for all i ∈ {2, . . . , n}. Possibly n = 1.
Negative body atoms do not contribute to the connectedness of a rule. Note that rules
without variables are always connected.

8 The queries inMdisjoint are conceptually similar to the first order sentences preserved under closed
extensions, studied by Compton [7].
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Next, for a Datalog¬ program P , we say that nullary relations of edb(P ) are global (for
all components) because the nullary input facts are given to all components by definition.
Similarly, we say a nullary relation of idb(P ) is global if all its rules, and the rules of the
idb-relations it depends on, do not use variables.9 So, the term “global” means that these
nullary relations will have the same contents on every component. Also, we say that a nullary
relation S(0) ∈ idb(P ) is value-detecting when (i) for each non-nullary relation R(k) ∈ edb(P ),
program P contains a rule isomorphic to ‘S( ) ← R(u1, . . . , uk)’, using pairwise distinct
variables; and, (ii) there are no other rules for S in P . Such value-detecting relations can
only be used to see if the input contains values.

Now, we say that a Datalog¬ program P is connected when
1. every rule of P is connected by itself; and,
2. the only nullary relations used in rule bodies are global or value-detecting.
Nullary relations that are neither global nor value-detecting may still be used for directly
representing output.

Note that the win-move program from Example 1 is connected. Below we consider other
examples of connected programs.

I Example 4. Consider the following semi-positive con-Datalog¬ program P with edb(P ) =
{A(1), B(1), R(2)}:

reach(x)← A(x).
reach(y)← reach(x), R(x, y).
T (x)← reach(x),¬B(x).

Thinking of relation R as edges of a graph, this program computes all nodes reachable from
set A but outside set B. J

I Example 5. As an example using nullary relations, here is a stratified con-Datalog¬

program P , with edb(P ) = {R(2), S(0), T (0), U (1)}, whose meaning is discussed below:

xor( )← S( ),¬T ( ).
xor( )← ¬S( ), T ( ).

V (x)← xor( ), U(x).
V (y)← V (x), R(x, y).

values( )← R(x, y).
values( )← U(x).
W ( )← ¬values( ), xor( ).

Suppose that V and W are the output relations. For the nullary relations of idb(P ), note
that xor is global, values is value-detecting, and W is neither global nor value-detecting (and
hence may not be used in rule bodies). In the presence of values, again thinking of relation R
as edges of a graph, program P finds in relation V the nodes reachable from U on condition
that the exclusive or S ⊕ T is true. In absence of values, P outputs S ⊕ T in relation W .

Note that V and W are never simultaneously nonempty (although they can be simultan-
eously empty). The output behavior strongly depends on the presence or absence of values;
value-detecting relations are needed to achieve this effect. J

9 Focusing on idb(P ), a relation R depends on another relation S if there is a path from R to S in the
so-called dependency graph of P , where the relations of idb(P ) are the vertices and there is an edge
from a relation A to a relation B if a rule with head relation A uses B in its body (either positively or
negatively).
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10 Datalog Queries Distributing over Components

4.2 Results
We recall the following result [4]:

I Proposition 6. Every query computable by a stratified con-Datalog¬ program distributes
over components.

The sketch below provides an intuitive understanding.

Proof (sketch). The positive body atoms in connected rules are all strung together. This
way, connected rules can only combine facts from the same component, causing derived
non-nullary facts to be connected to their originating component. Essentially, a con-Datalog¬

program derives facts “inside” components. So, the program does not notice when we separate
the components.

For completeness, we also discuss the details of nullary relations. First, note that a
value-detecting relation S is nonempty on the entire (nondistributed) input if and only if
relation S is nonempty on all individual components: this property is trivially true when
there is only one component; and, when there is more than one component, they each have
non-nullary facts.

Next, since each component contains by definition all nullary input facts, nullary facts
derived purely from nullary input facts can be seen as “global flags”. These global flags may
be injected into per-component computations (as represented by rules with variables).10

Lastly, nullary relations that are neither global nor value-detecting, can be seen as per-
component flags. The syntactic restriction prevents using such flags in further computation.
Without this restriction, per-component flags could be combined in a cross-component fashion,
preventing distribution over components. J

Within stratified Datalog¬, a new result is that the converse direction also holds:

I Proposition 7. Every query computable by a stratified Datalog¬ program, and distributing
over components, can be computed by a stratified con-Datalog¬ program.

Proof (sketch). Let Q be a query computable by a stratified Datalog¬ program P , with
the additional assumption that Q distributes over components. Let σ1 and σ2 denote the
input and output schema of Q. The proof is constructive: we transform P into a stratified
con-Datalog¬ program α(P ) such that for all inputs I over σ1, we have α(P ) (I)|σ2

= Q(I),
i.e., α(P ) also computes Q. The main idea behind α(P ) is that it uses connected rules
to separate the original computation over the components (as sketched for Proposition 6).
Concretely, α(P ) is defined as a union of four subprograms: α(P ) = P ↑∪P#∪P ↓∪P null. In
particular, there are two parts: subprogram (P ↑∪P#∪P ↓) is executed in case there are values
in the input, and otherwise the subprogram P null is executed (on just the nullary input facts).
Roughly speaking, the order P ↑, P#, P null, P ↓ aligns with a syntactic stratification for α(P ).
Below we explain each subprogram in turn. We also provide an illustration in Example 8.
As notation, for any schema σ, we define the extended schema #(σ) = {R(k+1)

# | R(k) ∈ σ}.
First, P ↑ transforms the input instance I over σ1 to its component-extended version over

#(σ1), denoted #(I): each original input fact is tagged at the front with the “identifier” of
the component it belongs to.11 However, we have no choice-mechanism that allows us to
pick just one value for this identifier; hence, each fact is tagged with all values occurring

10This usage is illustrated by Example 5.
11Nullary facts are tagged with all identifiers, since by definition they belong to all components.
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in its component. To illustrate, if I = {R(a), R(c), S(a, b), T ( )}, having two components
{R(a), S(a, b), T ( )} and {R(c), T ( )}, then P ↑ produces #(I) = {R#(a, a), R#(b, a), R#(c, c),
S#(a, a, b), S#(b, a, b), T#(a), T#(b), T#(c)}.

Next, letting A be a variable not yet used in P , the program P# is obtained from P

by changing each atom R(ū) (including head atoms) to R#(A, ū). Note that P# is over
#(sch(P )). The presence of variable A guarantees that all rules in P# are connected.
Moreover, satisfying valuations now only use sets of facts whose first value is the same,
i.e., the facts share the same component-identifier. Hence, when we execute P# over #(I),
the computation proceeds in a per-component fashion. Because the original program P

distributes over components, program P# correctly simulates P when the input contains
values (see below for more discussion). To obtain output over σ2, the third program P ↓

projects the relations of #(σ2) back to σ2.
The subprogram (P ↑ ∪ P# ∪ P ↓) will only do something if there are values in the input:

at the very least, variable A needs to be assigned a value when evaluating P#. But even
if adom(I) = ∅, in which case there is only one component, the original program P could
still do useful boolean operations (e.g., as in Example 5). This computation is preserved by
program P null, that contains only the rules of P without variables, after extending the output
rules with an additional negative body atom ¬values( ), where values is a value-detecting
nullary relation outside sch(P ). The atom ¬values( ) acts as a guard, so the output rules
will not fire when there are values. J

I Example 8. We illustrate the construction used in the proof of Proposition 7. Consider the
following Datalog¬ program P with edb(P ) = {R(1), S(1), T (2)} and idb(P ) = {U (2), V (2)}:

U(x, y)← R(x), S(y).
V (x, y)← U(x, y), T (x, y).

Assuming that V is the output relation, although the first rule of P is not connected, P
distributes over components because of the join with input relation T . The transformed
version of P is α(P ) = P ↑ ∪ P# ∪ P ↓ ∪ P null. Note that P null = ∅ as P contains no rules
without variables. Next, the program P ↑ that tags input facts with their component values,
contains the following rules, where ‘con’ is an auxiliary relation to detect which values are
connected:

con(x, x)← R(x).
con(x, x)← S(x).
con(x, y)← T (x, y).
con(x, y)← con(y, x).
con(x, y)← con(x, z), con(z, y).

R#(A, x)← R(x), con(x,A).
S#(A, x)← S(x), con(x,A).
T#(A, x, y)← T (x, y), con(x,A).

Next, program P# is as follows:

U#(A, x, y)← R#(A, x), S#(A, y).
V#(A, x, y)← U#(A, x, y), T#(A, x, y).

Lastly, to project output back to V , program P ↓ contains the rule: V (x, y)← V#(A, x, y).
Intuitively, whenever the rule for relation U# combines a fact R#(c, a) and a fact S#(c, b)

where a 6= b, the shared tag c implies (through program P ↑) that there is some T -fact
connecting values a and b in the input, i.e., R(a) and S(b) belong to the same component. So,
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12 Datalog Queries Distributing over Components

the rule for relation U# works “inside” components, considering fewer pairs of R-facts and
S-facts compared to the original rule for relation U . But, since P distributes over components
(assuming output relation V ), the output of α(P ) is the same as P for all inputs. J

Let Datalog¬s and con-Datalog¬s denote the classes of queries computable by respect-
ively stratified Datalog¬ programs and stratified con-Datalog¬ programs. By combining
Proposition 6 and Proposition 7, we may write:

I Theorem 9. Datalog¬s ∩D = con-Datalog¬s.

5 Connected Well-founded Datalog

In the following, we extend our results on class D and stratified Datalog¬ to the well-founded
semantics. The proofs for the well-founded semantics build upon the results for the stratified
semantics by constructing, for each Datalog¬ program P and an input instance I, a stratified
Datalog¬ program that simulates the well-founded semantics of P for the specific instance I.
We start with the following result:

I Proposition 10. Every query computable by a con-Datalog¬ program under the well-
founded semantics distributes over components.

Proof (sketch). Let Q be a query computable by a con-Datalog¬ program P under the
well-founded semantics. Let I be an input for Q. We have to show Q(I) =

⋃
J∈co(I)Q(J). We

first transform P to a stratified con-Datalog¬ program uk(P ), where each successive stratum
simulates an outer step in the alternating fixpoint computation of P , where k indicates
that 2k steps are simulated in total.12 This technique is inspired by the doubled program
construction [15]. Although only a constant number of steps can be simulated this way, for the
specific instance I, we can choose k sufficiently large so that uk(P ) simulates Pt(I) and Pt(J)
for each J ∈ co(I). Letting σ denote the output schema of Q, we have uk(P ) (I)|σ = Q(I)
and uk(P ) (J)|σ = Q(J) for each J ∈ co(I). Next, because uk(P ) is a stratified con-Datalog¬

program, we can apply Proposition 6 to know uk(P ) (I)|σ =
⋃
J∈co(I) uk(P ) (J)|σ, resulting

in Q(I) =
⋃
J∈co(I)Q(J), as desired. J

Now, Proposition 10 combined with the inclusion D ∩ V ⊆Mdisjoint from Section 3.2,
gives rise to the following corollary:

I Corollary 11. Every query computable by a con-Datalog¬ program under the well-founded
semantics, and being value-driven, is domain-disjoint-monotone.

Corollary 11 can be used to obtain an alternative proof for one of the main results in
previous work by Zinn et al. [19], namely, that the win-move query (Example 1) is in the
class F2, as we now explain. First, F2 is the class of queries that can be computed in a
coordination-free manner under so-called domain-guided distribution policies: here, nodes of
a network are made responsible for values of dom, and each input fact f is distributed to all
those nodes responsible for at least one value of adom(f). Coordination-freeness means that
for any input, there exists a domain-guided distribution policy under which the nodes do not
have to share input facts in order to compute the query. Now, since the win-move Datalog¬

program is connected, and this program is value-driven, Corollary 11 gives us that win-move

12The ‘u’ in uk(P ) stands for unrolling.
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is inMdisjoint. Further applying the resultMdisjoint = F2 [4], we obtain that win-move is
in F2.

We also have the converse result of Proposition 10:

I Proposition 12. Every query computable by a Datalog¬ program under the well-founded
semantics, and distributing over components, can be computed by a con-Datalog¬ program
under the well-founded semantics.

Proof (sketch). Let Q be a query computable by a Datalog¬ program P under the well-
founded semantics. Let α(P ) = P ↑ ∪ P# ∪ P ↓ ∪ P null be the con-Datalog¬ program as
defined in the proof for Proposition 7. If P is not stratified then P#, and by extension
α(P ), is also not stratified. We now outline the main arguments to demonstrate that α(P )
computes the query Q under the well-founded semantics. Let I be an input for Q. If I
contains no values then the output of α(P ) on I is just the output of P null on I, and P null

correctly simulates P on such inputs. We also sketch the main steps for the case that I
contains values. Let σ denote the output schema of Q. First, because P computes Q under
the well-founded semantics, we have Q(I) = Pt(I)|σ. Next, as in the proof of Proposition 10,
we convert P to a stratified Datalog¬ program uk(P ), with sufficiently large k ∈ N such
that: Q(I) = uk(P ) (I)|σ. Now, considering the transformation ᾱ(D) = D↑ ∪D# ∪D↓ for
any Datalog¬ program D, it can be shown that ᾱ may be applied to the right hand side, to
obtain: Q(I) = ᾱ(uk(P )) (I)|σ. Subsequently, we can use a technical lemma to know that
operations uk and ᾱ commute, i.e., ᾱ(uk(P )) (I)|σ = uk(ᾱ(P )) (I)|σ. We can up front also
choose k large enough to correctly simulate the well-founded semantics of ᾱ(P ) on I, so that
uk(ᾱ(P )) (I)|σ = ᾱ(P )t (I)|

σ
. Finally, since P null is constructed to output nothing when

adom(I) 6= ∅, we have Q(I) = ᾱ(P )t (I)|
σ

= α(P )t (I)|
σ
, as desired. J

Let Datalog¬wf and con-Datalog¬wf denote the classes of queries computable under the
well-founded semantics by respectively Datalog¬ programs and con-Datalog¬ programs. By
combining Proposition 10 and Proposition 12, we may write:

I Theorem 13. Datalog¬wf ∩D = con-Datalog¬wf .

6 Semi-connected Well-founded Datalog

Previous work has considered a relaxation of connected Datalog¬, called semi-connected [4].
We refer to Section 4.1 for the definition of connected Datalog¬, including the notions of
global and value-detecting nullary relations. Now, we say that a Datalog¬ program P is
semi-connected if we can partition the rules of P into two subprograms P1 and P2 such that:
1. P1 is a con-Datalog¬ program;13
2. P2 is a semi-positive program satisfying the following conditions: (i) idb(P2)∩sch(P1) = ∅,

and (ii) nullary relations occurring in rule bodies of P2 are either global or value-detecting
within the entire program P .

Note that the entire schema of P1 can be used as input for P2. So, P2 can negate relations of
idb(P1), as demonstrated by Example 15. Subprogram P1 or P2 could be empty. Subprogram
P1 is not necessarily stratified, but we may view P2 as a last computation step of P that
possibly uses non-connected rules. If P is stratified then we may view P2 as the last stratum.
We denote the language of semi-connected Datalog¬ programs as semicon-Datalog¬.

13Note that this includes restrictions on nullary atoms in rule bodies.
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14 Datalog Queries Distributing over Components

Recall the query classesMdisjoint and V from Section 3.2. Queries of V computable by
stratified semicon-Datalog¬ programs are inMdisjoint [4]. We can now confirm that this
result is maintained under the well-founded semantics:

I Theorem 14. Every query computable by a semicon-Datalog¬ program under the well-
founded semantics, and being value-driven, is inMdisjoint.

Proof (sketch). Let Q be a query that is computed by a semicon-Datalog¬ program P under
the well-founded semantics, and being value-driven. Let I and J be two inputs for Q such
that J contains no nullary facts and adom(I)∩adom(J) = ∅. We show that Q(I) ⊆ Q(I ∪J).
Following the proof idea for Proposition 10, we convert P to a stratified program uk(P ) with
k sufficiently large to correctly simulate the alternating fixpoint computation of P on the
instances I and I ∪ J . Importantly, if P is semi-connected then uk(P ) is also semi-connected.
Letting σ be the output schema of Q, it can be shown that uk(P ) (I)|σ ⊆ uk(P ) (I ∪ J)|σ,
using similar techniques as in previous work [4]. Next, because uk(P ) correctly simulates the
well-founded semantics of P on instances I and I ∪ J , and Q is computed by P , we obtain
Q(I) ⊆ Q(I ∪ J), as desired. J

We illustrate the use of Theorem 14 with the following example.

I Example 15. Building upon the win-move example (Example 1), the following program
outputs true (in nullary relation T ) if there are at least two nodes at which player 1 has a
winning strategy:

win(x)← move(x, y),¬win(y).
same(x, x)← move(x, y).
same(y, y)← move(x, y).

T ( )← win(x),win(y),¬same(x, y).

Note that negation on relation same simulates nonequality. This program is not stratified
due to the embedding of the win-move program; so, we apply the well-founded semantics.
Moreover, this program is not connected due to the last rule. But, the program is still
semi-connected. It is also value-driven. Hence we can apply Theorem 14 to know that the
query expressed by this program is inMdisjoint. Next, usingMdisjoint = F2 [4], we know
this query can be computed in a coordination-free manner under domain-guided distribution
policies. J

Relating to the class D, the following simple example shows that not all queries com-
putable by semicon-Datalog¬ programs under the well-founded semantics distribute over
components:14

I Example 16. Consider the following semicon-Datalog¬ program P , with edb(P ) = {R(1)}
and idb(P ) = {S(1), T (2)}, where T is the intended output relation:

S(x)← R(x).
T (x, y)← S(x), S(y).

14The query of Example 15 also does not distribute over components, e.g., on an input consisting of two
disjoint move-subgraphs, in each of which there is precisely one winning node.
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The first rule is connected, whereas the second rule is not. For the input I = {R(a), R(b)}, the
output of P on I under the well-founded semantics (or stratified semantics) is {T (a, a), T (b, b),
T (a, b), T (b, a)}. The facts T (a, b) and T (b, a), however, can not be computed when we
distribute P over the components {R(a)} and {R(b)}. J

7 Discussion

In this paper, we have shown that although membership of positive Datalog programs in
D is undecidable, connected Datalog¬ provides an effective syntax for Datalog¬ ∩D both
under the stratified as well as under the well-founded semantics. In addition, the latter result
provides an alternative explanation for why the non-monotonic win-move query is in F2.

In theory, any query in D (and therefore any query in connected Datalog¬) can be
evaluated without any communication over a network using a distribution where every
computing node is assigned, as a local instance, a union of connected components of the
global database instance (and every connected component is assigned to at least one computing
node). However, as finding connected components is expensive, it is unlikely that there are
many datasets for which such a distribution of data is practical. Still, it would be interesting
to investigate properties of Datalog¬ programs that imply distributions of data that give
rise to communication-free evaluation.

Hull and Yoshikawa [13] introduced a declarative formalism in the style of stratified
Datalog¬ in the context of object databases. Using their formalism, Cabibbo [6] showed,
among other things, that semi-positive Datalog¬ extended with value invention captures
the class of all queries preserved under extensions. The latter type of result can be seen as
evidence that semi-positive Datalog¬ is a core fragment of Datalog¬ for the class of queries
preserved under extensions. In analogy, we expect that con-Datalog¬ is somehow the right
Datalog¬ fragment for D and conjecture that con-Datalog¬ extended with value invention
captures the class D.
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