
To be or not to be Yutsis: algorithms for the
decision problem

D. Van Dyck, G. Brinkmann, V. Fack

Ghent University, Department of Applied Mathematics & Computer Science,
Research Group Combinatorial Algorithms and Algorithmic Graph Theory,

Krijgslaan 281-S9, 9000 Ghent, Belgium

B.D. McKay

Department of Computer Science, Australian National University, ACT 0200,
Australia

Abstract

Generalized recoupling coefficients or 3nj-coefficients can be expressed as multiple
sums over products of Racah or 6j-coefficients [1]. The problem of finding an optimal
summation formula (i.e. with a minimal number of Racah coefficients) for a given
3nj-coefficient is equivalent to finding an optimal reduction of a so-called Yutsis
graph [2].

In terms of graph theory Yutsis graphs are connected simple cubic graphs which
can be partitioned into two vertex induced trees. The two parts are necessarily
of the same size. In this area Yutsis graphs are also studied under the name of
cubic dual Hamiltonian graphs [3]. We present algorithms for determining whether
a cubic graph is a Yutsis graph. This is interesting for generating large test cases
for programs (as in [4], [5] or [6]) that determine a summation formula for a 3nj-
coefficient.

Moreover, we give the numbers of Yutsis and non-Yutsis cubic graphs with up
to 30 vertices and cubic polyhedra with up to 38 vertices. All these numbers have
been computed by two independent programs in order to reduce the probability of
error. Since the decision problem whether a given cubic graph is Yutsis or not is
NP-complete, we couldn’t hope for a polynomial time worst case performance of
our programs. Nevertheless the programs described in this article are very fast on
average.

Key words: angular momentum; generalized recoupling coefficient; Yutsis graph;
dual Hamiltonian graph; NP-complete; decision problem; heuristic.
PACS: 02.10.Eb, 02.20, 02.70, 03.65Fd, 31.15

Preprint submitted to Computer Physics Communications 19 October 2005

1 Introduction

In various fields of theoretical physics the quantum mechanical description of
many-particle processes often requires an explicit transformation of the angu-
lar momenta of the subsystems among different coupling schemes. Such trans-
formations are described by general recoupling coefficients and arise mostly
in atomic and nuclear structure and scattering calculations [1]. Several algo-
rithms have been described to generate a summation formula expressing the
recoupling coefficient as a multiple sum over products of Wigner 6j symbols
multiplied by phase factors and square root factors [4–10]. It is desirable to find
an optimal summation formula, i.e. with a minimum number of summation
variables and Wigner 6j symbols.

The best algorithms at present are based on techniques developed by Yutsis,
Levinson and Vanagas [2] and manipulate a graphical representation of the
recoupling coefficient called a Yutsis graph. Reduction rules are defined for
these graphs, which allow a stepwise transformation of the graph by reduction
and removal of cycles. Each reduction step contributes part of the final sum-
mation formula. Section 2 summarizes some notions from the quantum theory
of angular momenta, showing how a Yutsis graph is constructed for a given
recoupling coefficient and which reduction rules can be used. For the general
theory of Yutsis graphs we refer to [1] and [2].

For our purposes a Yutsis graph can be defined as follows. A binary coupling
tree on n + 1 leaves is an unordered binary tree in which each leaf has a
distinct label. By taking two binary coupling trees on n+1 leaves in which the
unique leaf vertices with the same label are identified and then removed and
where the root nodes are connected by an additional edge, we obtain a cubic
multigraph with 2n nodes and 3n edges. In this multigraph the internal vertices
of the coupling trees define two vertex induced trees and the former leaf and
root edges form an edge-cut on n + 2 edges. Figure 1 shows an example. A
multigraph that can be constructed this way is called a Yutsis graph or simply
Yutsis. Two vertex induced trees coming from such a construction are called
the defining trees and the edge-cut is called the defining cut. Note that a given
Yutsis graph can in general be obtained from more than one pair of trees, so the
defining trees and the defining edge-cut are in general not uniquely determined.
Since the two endpoints of multiple edges in a Yutsis graph must obviously
belong to different trees, they are trivial from the viewpoint of the decision
problem and we will restrict ourselves to simple graphs when discussing the
decision problem.

Email addresses: Dries.VanDyck@pandora.be (D. Van Dyck,), Gun-
nar.Brinkmann@UGent.be (G. Brinkmann,), Veerle.Fack@UGent.be (V. Fack),
bdm@cs.anu.edu.au (B.D. McKay).

2

j
1

j
1

j
2

j
2

j
3

j
3

j
5

j
5

j
4

j
4

j
9

1 2 3 4 5 3 5 1 24

1 2

j
8

j
12

j
11

9 9
j j

j
6

j
7

j
11

j
12

j
6

j
7

j
10

j
8

j
10

(b)(a)

1
T

T
2

G

T T

j j j j j j j j j j

j
9

Fig. 1. (a) Two binary coupling schemes, and (b) the corresponding Yutsis
graph

In mathematics, Yutsis graphs are also known as dual Hamiltonian cubic
graphs [3].

Up to now no better method is known to determine whether a cubic graph is
Yutsis than to search for a defining tree (or cut). For the quantum theory of
angular momenta, we are interested in obtaining large test cases by generating
large cubic graphs at random and filter out those graphs which are not Yutsis.
In addition we would like to identify the non-Yutsis graphs and study their
structure.

All graphs in this article are assumed to be connected.

2 Graphical representation of recoupling coefficients

In [1, Topic 12], recoupling theory is considered from the point of view of
binary coupling schemes. A binary coupling scheme is the rooted binary tree
representing the order of coupling of a state vector in the tensor product
of n + 1 angular momentum multiplets, labelled respectively by the angular
momenta j1, j2, . . . , jn+1. The leaves of the binary tree are labelled by these
angular momenta j1, j2, . . . , jn+1, and the remaining vertices of the tree can
be labelled by the intermediate angular momenta. For example, the following
vector can be considered :

| ((j1, j2)j6, (j3, (j4, j5)j7)j8)j9 〉 ,

which corresponds to the left-side tree in Figure 1(a).

There are obviously several ways in which n+1 angular momenta can be cou-
pled, and the quantities that typically appear in atomic and nuclear structure
computations are the related general recoupling coefficients or 3nj-coefficients.

3

A general recoupling coefficient (or a generalized 3nj-coefficient) is defined to
be the transformation coefficient between any such two coupling schemes, e.g.

〈 (j1, j2)j6, ((j3, (j4, j5)j7)j8)j9 | (j3, ((j5, j1)j10, (j4, j2)j11))j9 〉 . (1)

It is a fundamental theorem of recoupling theory [1, p. 455] that each such
transformation coefficient (i.e. every generalized 3nj-coefficient) can be ex-
pressed in terms of sums over products of Racah coefficients (6j-coefficients).

A famous program of Burke [9], NJSYM, already deals with this problem.
Burke’s approach is equivalent to finding a certain path between the two
binary coupling schemes (representing the bra- and ket-part of the general
recoupling coefficient) by successive elementary transformations on the trees.
The shorter this path, the better the resulting formula. The path found by
NJSYM is generally rather long, thus yielding expressions which are far from
optimal. In order to improve NJSYM, other algorithms have been developed
which implement graphical methods due to Yutsis, Levinson and Vanagas [2].

Consider a general recoupling coefficient of n + 1 integer and half integer an-
gular momenta. With each label in the recoupling coefficient an edge in the
graph is associated and with each coupling a node is associated, resulting in
a cubic graph with 2n nodes and 3n edges. The nodes representing the cou-
pling of the left-hand side of the recoupling coefficient get a ‘−’-sign, those
on the right-hand side get a ‘+’-sign. The edges corresponding to the com-
pounded angular momenta on the left-hand side are directed away from the
node while the edges representing the resultant are directed towards the node.
The direction of the edges corresponding to the left-hand side are the reverse
of those corresponding to the right-hand side. The Yutsis graph shown in Fig-
ure 1(b) corresponds to the recoupling coefficient in equation (1) (where signs
and directions are omitted).

The sign of a node where angular momenta j1, j2 and j3 meet can be inverted
by multiplying the value the graph represents by (−1)j1+j2+j3. A change of
direction of an edge with label j results in a multiplication by (−1)2j . The
transformation coefficient then equals the j coefficient represented by the di-
agram multiplied by (see [2], equations (22.1) and (22.2)):

(−1)2(J+
∑n−1

i=1
bi+S)[

n−1∏

i=1

(2ai + 1)(2bi + 1)]1/2 ,

with S the sum of all ‘first’ coupled angular momenta, n + 1 the number of
angular momenta, ai the intermediate angular momenta on the left side, bi

the intermediate angular momenta on the right side, and J the total angular
momentum.

4

Once the graph is generated, it can be simplified with the help of the reduction
rules developed by Yutsis, Levinson and Vanagas [2]. Using these rules the
reduction algorithms iteratively eliminate cycles from the Yutsis graph, until
the graph is simplified to a so-called “triangular delta”, i.e. a graph consisting
of two nodes connected by three parallel edges. Several algorithms based on
this approach have been developed [4–8,10,11].

From an algorithmic point of view one is interested in the complexity of the
formula. Since the difference between the number of summations and the num-
ber of 6j coefficients is constant, the number of 6j coefficients suffices as mea-
sure for the complexity of the formula. With this idea in mind the signs of
the nodes and the direction of the edges can be neglected, since they only
contribute in phase and weight factors, not influencing the complexity of the
generated summation formula.

3 The decision problem is NP-Complete

In this section we will prove that the problem of deciding whether a given
graph is Yutsis or not is a very hard problem in the worst case. To be exact:
The problem is NP-complete and it is even NP-complete when restricted to
the subclass of cubic polyhedra, i.e. 3-connected planar cubic graphs.

Theorem 1 The decision problem whether a given cubic polyhedron is Yutsis
or not is NP-complete.

Proof

Since it is easy to see that this problem is in NP (take e.g. n random vertices
and check whether they and their complement each induce a tree), the result
is a direct consequence of results of Jaeger, Chvátal and Wigderson:

In [3] Jaeger defines a graph G to be dual hamiltonian if it has an elemen-
tary cut on |E| − |V | + 2 edges. He mentions that the planar dual of a dual
hamiltonian graph is hamiltonian, but also the reverse is well known and easy
to prove. He also proves that a graph G is dual hamiltonian if and only if it
has a partitioning of V as T1 ∪ T2 such that T1 and T2 induce a tree. This
means that a cubic polyhedron is Yutsis if and only if its dual triangulation
is hamiltonian.

Chvátal and Wigderson proved, independently of each other, that determining
the hamiltonicity of a graph is NP-complete, even when restricted to triangu-
lations [12,13].

5

Since the computation of the dual can easily be done in polynomial time,
combining these results proves the theorem.

4 Preliminaries

In this section we will give and prove some lemmas and remarks that we will
use in the algorithm. G = (V, E) always denotes a simple cubic graph with 2n
nodes and 3n edges.

Lemma 2 Let G be a cubic graph with 2n nodes, T an induced subgraph on
n vertices that is a tree and S the complement of T .

Then S, T are defining trees for a Yutsis decomposition if and only if S is
connected.

Proof

If T is an induced tree on n vertices in a cubic graph, then there are 3n −
2(n− 1) = n + 2 edges between T and its complement S. Therefore, there are
(3n − (n + 2))/2 = n − 1 internal edges in S which gives that S is a tree if
and only if it is connected.

Lemma 3 Let G be a cubic graph with 2n nodes, T ′ an induced connected
subgraph and S ′ the complement of T ′.

If S ′ is not connected, then there are no defining trees T, S of a Yutsis decom-
position so that T ′ ⊆ T .

Proof

Suppose that there is such a decomposition. Since T is a tree and T ′ is a
connected subgraph of T , each component of T \ T ′ is a tree and contains
a vertex which is an endvertex of T . Each such endvertex is adjacent to S,
which implies that S ′ is connected contrary to hypothesis.

The following remark is trivial to prove, but we want to mention it nevertheless
in order to be able to refer to it later on.

Remark 4 A vertex of degree 2 is a cutvertex in a graph if and only if it is
not contained in a cycle.

6

In planar graphs we will use the embedding of the graph to speed up the
algorithm. Note that in a two-connected plane graph every edge is in the
boundary of two different faces. This gives the following remark and definition:

Remark 5 In a cubic 2-connected graph G = (V, E) embedded in the plane,
for every pair e, e′ of edges sharing a vertex, there is exactly one face fG(e, e′)
so that both e and e′ are in its boundary.

This remark enables us to formulate the following lemma we use in the algo-
rithm:

Lemma 6 Given a cubic 2-connected graph G = (V, E) embedded in the
plane, a subgraph T = (VT , ET) that is a tree and a vertex v &∈ VT that has one
neighbour in T and 2 neighbours v′, v′′ in V \ VT . Let e = {v, v′}, e′ = {v, v′′}.

The vertex v is a cutvertex in the graph T c induced by V \ VT , if and only if
the boundary of fG(e, e′) contains a tree vertex.

Proof

First suppose that fG(e, e′) does not contain a tree vertex. Then the boundary
is a cycle in V \ VT , so v is contained in a cycle and therefore no cutvertex
due to Remark 4.

Now suppose that fG(e, e′) does contain a tree vertex t and let t′ denote the
tree neighbour of v. Then there is a path from t to t′ in T and adding the
edge {t′, v} to it we have a path between two vertices of the boundary of
fG(e, e′). Connecting the endvertices through the interior of fG(e, e′) we get a
Jordan curve with the two non-tree neighbours of v in different components.
So they are also in different components of T c − {v} while they are in the
same component of T c. So v is a cutvertex of T c.

We also use the following easy criterion to determine that some graphs are in
fact not Yutsis graphs. As the tables show, this criterion doesn’t eliminate too
many graphs, but all computations necessary to apply it are also used to deter-
mine a good starting vertex for the exhaustive search for a tree decomposition,
so applying it is practically for free:

Lemma 7 Let t denote the number of triangles in a cubic graph and f the
number of vertices not contained in a triangle. If t > f + 4 then the graph is
not a Yutsis graph.

Proof

7

Note that in a Yutsis-decomposition in every triangle there is exactly one edge
that belongs to one of the trees. This implies that all vertices in triangles have
degree 1 or 2 in one of the trees and in every triangle there is at least one
vertex with degree 1 in one of the trees. So the number of triangles is a lower
bound for the numbers of leaves in two trees that form a Yutsis decomposition.
If for a given decomposition tree T we let v3 denote the number of vertices of
T with degree 3 and b the number of leaves, then we have v3 = b − 2 so for
both trees together we have that there must be at least t−4 vertices of degree
3 in the two trees which can – as noticed before – not belong to a triangle.

5 Fast heuristics – a greedy approach

In spite of the fact that this decision problem is NP-complete, in most cases
a set of defining trees can be found very quickly by a heuristic we will now
describe. Both of our filters work by first applying a heuristic a couple of
times. Only in cases where the heuristics do not find a tree decomposition do
we apply exhaustive search methods.

Given a connected cubic graph G, we start with a random vertex forming a
one-vertex tree T1 and a list L1 of all its neighbours. We increase the tree vertex
by vertex forming trees T2, T3, . . . , Tk and corresponding lists L2, L3, . . . , Lk.
In each step i, Li is a list of all vertices in V \ Ti which neighbour vertices in
Ti. If we manage to build a tree Tn this way and the subgraph S induced by
the remaining n vertices is connected, then we have proved that G is a Yutsis
graph.

The tree Ti+1 is formed by adding a vertex from Li to Ti. We never add a
vertex to the tree Ti that has two neighbours in Ti, as this would lead to a
cycle in Ti and therefore also in Tn. Nor do we add a cutvertex of the graph
induced by V \ Ti, because Lemma 3 applied to Ti ∪ {v} gives in that case
that Tn cannot be a tree of a Yutsis decomposition. If we attempt to add a
vertex but it is rejected by one of these conditions, we remove it from the list
and choose a new vertex.

As long as there are vertices in the list, this process can continue – it must only
stop when the list is empty. This is where the greedy aspect comes in: when
choosing the next vertex to be added to Ti we always choose one for which
the list grows the most – or in other words: a vertex v so that the number of
unplaced neighbours of v – that is: neighbours that are not yet contained in
Li or the tree – is as large as possible.

8

5.1 Algorithmic details

In order to make this approach run quickly, it is necessary to be able to find
the next vertex to add efficiently. That is, we must find those vertices in the
list that have the largest number of unplaced neighbours very quickly and be
able to check whether they are cutvertices of the complement or have two
neighbours in the tree.

To this end we keep three lists Lj
i for every step i with 0 ≤ j ≤ 2 and append

a new vertex that has to be added to one of the lists to list Lj if it has j
unplaced neighbours at step i. When there are two vertices with the same
number j of unplaced neighbours, they are added to Lj in a random order.

When choosing the next vertex to add, we always choose the list Lj with j
as large as possible so that Lj is nonempty and take the last vertex added
to this list (so it is a kind of a depth-first or LIFO approach). If j > 0, this
vertex is then tested for the number k of unplaced neighbours, which may
have decreased since the vertex was added to the list. If j &= k, so k < j, the
vertex is placed in the list Lk

i , becoming the last vertex added to the list, and
we choose again. Since the computation of the number of unplaced neighbours
can obviously be done in constant time and every vertex is tested and moved
at most 3 times, we have:

Remark 8 The total number of steps necessary for choosing vertices in one
run of the heuristic in a graph with 2n vertices is at most O(n).

The most time consuming part in this heuristic is the computation whether
a vertex is a cutvertex in the complement of Ti. This computation takes time
O(n) and must be performed O(n) times. Therefore we get a total running time
of O(n2). Some techniques sped up the cutvertex testing routine considerably
though not enough to guarantee a total of O(n) steps in total per application
of the heuristic in the general case:

Note that we only have to test vertices v that have degree 2 in the complement
for being cutvertices in the complement, so due to Remark 4 we just have to
find out whether v lies on a cycle. We do a simultaneous breadth-first search
started at both neighbours of a vertex to be tested and stop as soon as a
vertex is reached from both neighbours. If g is the size of a smallest cycle
containing v, the routine will only visit vertices at distance at most)g/2*
from v, so in case of small g this gives a sub-linear performance, but in case
of v being a cutvertex, the whole complement still has to be searched. In
addition we mark vertices that are known to not lie on a cycle (e.g. discovered
in an earlier test) and perform our breadth-first searches on the graph with
those vertices removed. Though speeding up the search considerably, this still
doesn’t lead to a sub-quadratic worst case performance.

9

A similar technique with three simultaneous breadth-first searches is also per-
formed for the starting vertex. If it is found to be a cutvertex of G, then G is
not Yutsis.

In case of plane graphs that come with an embedding, we keep a list of all
6n pairs of edges sharing a vertex. When the first vertex is added to the tree,
all pairs of edges belonging to faces containing this vertex are marked. This
can easily be done in time proportional to the number of pairs to be marked.
Testing a vertex for being a cutvertex can now – due to Lemma 6 – be done in
constant time: we just have to check whether the pair of edges that do not lead
to tree neighbours is marked or not. Adding a new vertex to the tree we just
have to mark all pairs of edges belonging to the face just checked, which again
can be done in time proportional to the number of pairs marked. Since there
is a linear number of pairs of edges and every pair is marked at most once
we get a time consumption of O(n) for all connectivity tests and markings
done in one application of the heuristic. So for planar graphs we have a total
running time of O(n).

5.2 Discussion

Though the heuristic is extremely simple and can easily be implemented to
run in time O(n2) per trial, O(n) for plane graphs, the results are astonishingly
good. We tested various variants of this approach by modifying the ways of
choosing the next vertex to add – e.g. choosing vertices from the list completely
at random or in a depth-first or breadth-first manner. The greedy approach
always turned out to give the lowest average number of attempts necessary to
find a decomposition.

In [14] a much more elaborate approach via the local search method requiring
time O(n4) per trial is described. Nevertheless in the local search approach
the number of graphs where a decomposition is found in the first one or two
attempts decreases rapidly from 87% (one trial), 97% (two trials), for n = 10
(1000 random cubic graphs tested) to about 30%, resp. 50%, for n = 200 (2000
random cubic graphs tested), which is the largest case for which the program
was run, while the greedy method described above finds a decomposition for
about 96% (n = 10), 89% (n = 200), of the graphs in the first trial and 99.5%,
resp. 98.5%, in the first two trials. For the greedy approach the average number
of trials needed to find a set of defining trees grows very slowly – from 1.04
for n = 10 to 1.16 for n = 150000.

In spite of testing more than 350 000 large graphs we only once came across
a graph where the heuristic did not find a set of defining trees. This graph
turned out to have a bridge. In the other more than 350 000 cases the maximum

10

number of times the heuristic had to be applied to find a decomposition was 8.
In figure 2 you will find the development of the number of trials needed when
choosing the vertex to add randomly instead of greedily, but still applying the
same rules to remove vertices from the list.

Taking into account that it is an NP-hard problem, even the random approach
works astonishingly well, though choosing a completely random tree (that is
without the deletion of cutvertices from the list) only leads to the finding of
defining trees for very small vertex numbers (see Figure 3 where this approach
is named Plain Random). The key is in fact the application of the simple
Lemma 3.

There are graphs for which the heuristic can’t find a tree decomposition in
spite of the fact that one exists. The smallest examples are for 22 vertices. The
random approach does find a decomposition, but as the graphics show, for by
far most of the graphs the performance of the greedy heuristic is considerably
better.

6 An exhaustive search method

Our testing method works in 4 phases: first the greedy heuristic is applied
to the graphs, then the remaining graphs are tested for having bridges (such
graphs are trivially non-Yutsis), then the heuristic is applied again to the
graphs still remaining, and finally an exhaustive search is applied to the
graphs.

The number of applications of the heuristic is determined by the input graphs.
We found that +(1/5)|V |, trials for the first series and +(1/10)|V |, trials for
the second series are suitable values for (small) graphs and two times (1/2)|V |
trials are good for cubic polyhedra, which are listed in table 2. As an example:
in the case of all cubic graphs on 24 vertices, 98.25% of the input graphs
were determined to be Yutsis after the first 4 runs of the heuristic. That were
99.86% of the graphs that turned out to be Yutsis in the end. In the following
step 76.92% of the remaining graphs were detected to have a bridge and after
the last two applications of the heuristic 99.95% of the Yutsis graphs had
been detected and only 0.31% of all graphs remained to be examined by the
exhaustive test.

Our exhaustive search is simply a branch-and-bound version of the construc-
tion also used for the heuristic, without the greediness. That is: We start
with some vertex and recursively add vertices from the list of vertices neigh-
bouring the tree. In each iteration, vertices that became cutvertices in the
complement or have two neighbours in the tree are removed from the list. All

11

vertices remaining in the list are first added to the tree and in case no Yutsis
decomposition is found in the following recursion steps then removed from the
list and forbidden for later addition.

We tried several more elaborate search methods, but though they decreased
the number of iterations, all of them in fact slowed down the computations
for small graphs.

One thing that did in fact pay off was the determination of a good starting
vertex based on the number of triangles in the neighbourhood:

Define t(v) = #{w ∈ V |{v, w} ∈ E and w is contained in a triangle} and
the quality q(v) of a vertex as

∑
{w|{v,w}∈E} t(w). We choose a random vertex

among those with maximal quality as the starting vertex. For 24 vertices this
choice of the starting vertex decreases the number of iterations needed in the
exhaustive test by a factor of 4.4 (2.9 for graphs that turned out to be Yutsis
and 4.5 for non-Yutsis graphs).

Since in order to apply this criterion we have to search for triangles anyway, we
can also use the result to apply Lemma 7. The fraction of graphs that can be
proven not to be Yutsis this way is fairly small (e.g. 1660 for 24 vertices) but
since applying the lemma causes no extra cost, it is of course worth doing it.

7 Results

The following numbers of Yutsis and non-Yutsis graphs were computed in-
dependently by the program described here and another somewhat slower
approach that we have not described. The number of graphs with bridges and
graphs with too many triangles were only computed by the first program. The
programs used to generate the graphs were minibaum for all cubic graphs (see
[15]), plantri for all cubic polyhedra (see [16]) and genrang for the tests of
large cubic random graphs (see [17]). Some of the larger numbers were com-
puted by a program using a preliminary version of the greedy heuristics in
which the next vertex to add was always chosen among the last two vertices
added to the list. Since the number of Yutsis and non-Yutsis graphs or graphs
that can be determined to be non-Yutsis due to Lemma 7 are independent of
this, we did not repeat the computation. Times where given always refer to
the method described here implemented in C and run on a 2.6 GHz Pentium
4 Linux computer. For large vertex numbers the computation was done on
clusters with various machine types in Bielefeld, Canberra and Ghent.

12

0

1

2

3

4

5

6

7

0 50000 100000 150000 200000 250000 300000

runs

graph size

Greedy

Random

Fig. 2. The average number of runs on large random cubic graphs. For every size
at least 25 000 graphs have been tested by the greedy heuristic and 1000 by the
random heuristic.

0
5

10
15
20
25
30
35
40
45
50

20 22 24 26 28 30

runs

graph size

Greedy
Random

Plain random

Fig. 3. The average number of runs on small random cubic graphs. For every size
at least 9000 graphs have been generated and tested.

References

[1] L.C. Biedenharn and J.D. Louck, “Coupling of n angular momenta: recoupling
theory”, in: The Racah-Wigner Algebra in Quantum Theory, Encyclopedia of
Mathematics and its Applications, Vol. 9, pp. 435–481 (Addison-Wesley, 1981).

[2] A.P. Yutsis, I.B. Levinson and V.V. Vanagas, Mathematical Apparatus of
the Theory of Angular Momentum, (Israel Program for Scientific Translation,

13

2n Not with too many time

Graphs Yutsis Yutsis bridge triangles (sec)

4 1 1 0 0 0

6 2 2 0 0 0

8 5 5 0 0 0

10 19 18 1 1 0

12 85 80 5 4 1

14 509 475 34 29 2

16 4 060 3 836 224 186 6

18 41 301 39 555 1 746 1 435 22 <0.1

20 510 489 495 045 15 444 12 671 77 1.3

22 7 319 447 7 159 696 159 751 131 820 351 25

24 117 940 535 116 040 456 1 900 079 1 590 900 1 660 480

26 2 094 480 864 2 068 782 009 25 698 855 21 940 512 8 875 8 400

28 40 497 138 011 40 107 422 184 389 715 827 339 723 835 49 978

30 845 480 228 069 838 931 116 609 6 549 111 460 5 821 548 438 301 277
Table 1
The number of Yutsis graphs with 2n nodes for n ≤ 15. The numbers of
graphs with too many triangles are only for bridgeless graphs. The times
given are on a 2.6 GHz Pentium 4 running Linux.

Jerusalem, 1962).

[3] F. Jaeger, “On vertex-induced forests in cubic graphs”, Proceedings 5th
Southeastern Conference, Congressus Numerantium (1974) 501–512.

[4] P. M. Lima, Comput. Phys. Commun. 66 (1991) 89.

[5] S. Fritzsche, T. Inghoff, T. Bastug and M. Tomaselli, Comput. Phys. Commun.
139 (2001) 314.

[6] D. Van Dyck and V. Fack, “GYutsis: heuristic based calculation of general
recoupling coefficients”, Computer Physics Communications 154 (2003) 219–
232.

[7] V. Fack, S. N. Pitre and J. Van der Jeugt, “Calculation of general recoupling
coefficients using graphical methods”, Comput. Phys. Commun. 101 (1997)
155–170.

[8] D. Van Dyck and V. Fack, “New heuristic approach to the calculation of general
recoupling coefficients”, Computer Physics Communications 151 (2003) 353–
368.

14

2n too many Not time

Graphs Yutsis triangles Yutsis (sec)

4 1 1 0 0

6 1 1 0 0

8 2 2 0 0

10 5 5 0 0

12 14 14 0 0

14 50 50 0 0

16 233 233 0 0

18 1 249 1 248 1 1

20 7 595 7 593 0 2

22 49 566 49 536 4 30 0.2

24 339 722 339 483 2 239 1.1

26 2 406 841 2 404 472 67 2 369 9

28 17 490 241 17 468 202 16 22 039 76

30 129 664 753 129 459 090 1268 205 663 663

32 977 526 957 975 647 292 414 1 879 665 5 830

34 7 475 907 149 7 458 907 217 29 984 16 999 932 73 273

36 57 896 349 553 57 744 122 366 11 109 152 227 187

38 453 382 272 049 452 028 275 567 744 000 1 353 996 482
Table 2
The numbers of Yutsis and non-Yutsis cubic polyhedra up to 38 vertices. The times
given are on a 2.6 GHz Pentium 4 running Linux.

[9] P.G. Burke, “A program to calculate a general recoupling coefficient”,
Computer. Phys. Commun. 1 (1970) 241–250.

[10] A. Bar-Shalom and M. Klapisch, “NJGRAF – An efficient program for
calculation of general recoupling coefficients by graphical analysis, compatible
with NJSYM”, Comput. Phys. Commun. 50 (1988) 375–393.

[11] D. Van Dyck and V. Fack, “On the Reduction of Yutsis Graphs”, accepted by
Discrete Mathematics (2004).

[12] V. Chvátal, “Hamiltonian cycles”, in: E.L. Lawler, J.K. Lenstra,
A.H.G. Rinnooy Kan, D.B. Shmoys, The Traveling Salesman Problem, pp. 403–
429 (John Wiley, 1985).

[13] A. Wigderson, “The complexity of the hamiltonian circuit problem for maximal
planar graphs”, Technical Report Computer Science Department Princeton

15

University 298 (1982).

[14] D. Van Dyck and V. Fack, “To be or not to be Yutsis”, Electronic Notes in
Discrete Mathematics 17C (2004) 275–279.

[15] G. Brinkmann, “Fast generation of cubic graphs”, Journal of Graph Theory,
23(2), pp. 139–149, (1996).

[16] G. Brinkmann and B.D. McKay, “Fast generation of non-isomorphic planar
cubic graphs.”, in preparation, see http://cs.anu.edu.au/∼bdm/plantri/.

[17] B. D. McKay, gtools programs available at
http://cs.anu.edu.au/∼bdm/nauty.

16

