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Abstract Sticker complexes are a formal graph-based data model for a restricted
class of DNA complexes, motivated by potential applications to databases. This
data model allows for a purely declarative definition of hybridization. We intro-
duce the notion of terminating hybridization, which intuitively means that only a
finite number of different products can be generated. We characterize this notion
in purely graph-theoretic terms. Under a finite alphabet, each product is shown to
be of polynomial size. Yet, terminating hybridization can still produce results of
exponential size, in that there may be exponentially many different (nonisomor-
phic) finished products. We indicate a class of complexes where hybridization is
guaranteed to be polynomially bounded.

1 Introduction

Since Adleman’s experiment [2], DNA Computing has greatly evolved, and many
different modes of computation have been invented and investigated [3,24,6,28,
37,29,32,16,5,36,33,35,25]. A major goal throughout this evolution has been to
achieve autonomy of computation: computation without human or machine medi-
ation, e.g., by self-assembly or strand displacement.

At the same time, DNA Computing has also high potential for database appli-
cations [4,12,38,27]. Indeed, the nanoscale and relative indestructibility of single
DNA strands are very promising properties for database storage. Moreover, the
highly parallel mode of operation that can be achieved in DNA Computing is a
nice match with the bulk-processing nature of database computations.

Autonomy of computation is perhaps less crucial for databases, where indeed
traditionally a strict line is drawn between the data, and the query or update
operations performed on the data [17]. Also, in database theory [1], one expects
formal data models defined on the logical level, and declarative definitions of the
basic data manipulation operations.
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In the present paper, in the context of a formal data model of DNA complexes,
we focus on hybridization, one of the cornerstone operations in DNA computing.
The data model is that of sticker complexes, a graph-theoretically defined formal-
ization of DNA complexes of a limited format. Sticker complexes have been shown
in an earlier paper [18] to be adequate for database computations in DNA. Indeed,
while it is relatively straightforward to represent relational databases in DNA, a
good data model for database computation must also be able to represent all inter-
mediate data structures needed to support database operations. Specifically, it has
been shown that sticker complexes are adequate to support a complete simulation
of the operations of the relational algebra, which provides a set of core operations
in relational databases [17]. The intermediate data structures involved in the sim-
ulation of the relational algebra are quite complex as they need to support the
creation of circular strands.

The problem addressed in the present paper is to understand the well-defined-
ness and termination of the hybridization operation on sticker complexes. Here we
are considering hybridization as a database operation, like the Cartesian product
(related to the relational join). When we want to construct the Cartesian product
U ×V of two sets U and V , with U of size m and V of size n, we need in principle
n copies of every element of U , and m copies of every element of V , so that
we have enough “material” to construct the m × n-element set {(u, v) | u ∈ U
& v ∈ V }. When more copies are provided of some elements of U or V , some
duplicate pairs can be constructed, but no really new information is generated.
When hybridization has this behavior, we say it terminates.

The main result of this paper is to provide a purely graph-theoretic character-
ization of termination of hybridization, which will also imply that termination is
decidable for sticker complexes. This result emphasizes the restricted nature of the
sticker complex data model, since it is well known that termination is undecidable
for Turing-universal computation models [20]. The investigation of computation
models that are not computationally complete, and the corresponding search for
the right balance between sufficient expressive power and low complexity, is one
of the hallmarks of database theory [1].

We also investigate complexity issues related to DNA hybridization. Even when
hybridization in a given DNA complex terminates, depending on the structure of
the complex, an exponential amount of material may be required to produce the
complete result. This problem was already present in Adleman’s solution to the
Hamiltonian Path problem [19], and we show it can still occur within the limited
context of sticker complexes. Since such exponential behavior is undesirable, and
also not needed to support typical database operations, we would like to avoid it.

We will show that the result of hybridization splits up, graph-theoretically, in
a number of connected components, and each component is polynomial in size.
Hence, the exponentiality is confined to the possible number of distinct compo-
nents. Furthermore, we identify a broad family of classes of DNA complexes, called
c-bounded complexes, within which hybridization is guaranteed to require only a
polynomial amount of resources.

An extended abstract of this paper, without proofs, was presented at DNA 17
[8].
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2 Related work

In one of the first papers on DNA computing, Reif already defined a formal data
structure of DNA complexes [26]. Our data structures are simpler in an effort
to avoid unrealistic or otherwise complicated and unmanageable secondary struc-
tures. (Reif avoids these by invoking an oracle for feasibility.) Our simplification
is that single strands are either all-positive or all-negative, and moreover, negative
strands have length at most two1. The short negative strands can be thought of
as stickers; thus the name “sticker complexes”. Our previous work showed that
the restrictions of sticker complexes do not preclude interesting database com-
putations. An important feature of our model, which is lacking in Reif’s, is the
formal distinction between the structural content of a complex, and the complex as
used in reactions, with multiples of each connected component present in surplus
quantities.

The use of short stickers in DNA computing originates with Roweis et al. [29],
where stickers were used to turn bits on or off. We use stickers to bind strands
together so that possibly complex secondary structures are formed.

The present work also fits in a recent trend of integrating formal methods
(such as process calculi in computational systems biology [9]) with DNA com-
puting [10,23]. Yet the formalisms we use are different from process calculi and
comprise mainly set theory, graph theory, and logic-based query languages. The
computational power of hybridization in various models of formal languages has
been intensively studied, e.g., [24,37].

Last but not least, our formal model of hybridization is strikingly comparable in
spirit to the model of Jonoska, McColm and Staninska [21]. That paper introduces
the notion of a “pot type”; for the purpose of hybridization, the model of pot types
and our model of sticker complexes are roughly equivalent [7]. It was shown that
weak satisfiability is decidable in polynomial time. Using our own terminology
as introduced in Section 4, a complex is weakly satisfiable if it admits at least
one “finished” component. In contrast, we show that termination is decidable
in polynomial time. Termination is a stronger property than weak satisfiability; a
terminating complex is weakly satisfiable, but a complex may be weakly satisfiable
without terminating. Jonoska et al. also define the notion of stable complex, which
corresponds to our notion of maximal matching as defined in Section 4.

In an earlier paper, Jonoska and McColm considered the problem of given a
pot type and a bound b, to decide whether there exists a finished component of
size b [22]. They showed that non-deterministic-time complexity classes can be
captured in this manner. In comparison, in Section 6 of the present paper, we
give complexity results of a very different kind. Specifically, we show that the size
of any finished component of a terminating pot type is polynomially bounded.
Moreover, for a restricted class of pot types, called c-bounded, we show that also
the number of different finished components is polynomially bounded.

1 Of course, it remains to be seen, either experimentally or by numeric simulation, to what
extent all structures that can be described as sticker complexes are realizable in practice.
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3 The sticker-complex data model

From the outset we assume a finite alphabet Σ. As customary in formal models
of DNA computing [24], each letter represents a domain, i.e., a string over the
DNA alphabet {A,C,G, T}. The set of resulting domains must form a set of DNA
codewords [13,30,34]. This should always be kept in mind.

The alphabet Σ is matched with its negative version Σ̄ = {ā | a ∈ Σ}, disjoint
from Σ. Thus there is a bijection between Σ and Σ̄, which is called complementar-
ity and is denoted by overlining; we also set ¯̄a = a so the complementarity relation
becomes symmetric. Obviously, ā stands for the Watson-Crick complement of the
DNA sequence represented by a. The elements of Σ are called positive symbols
and the elements of Σ̄ are called negative symbols.

We recall some fundamental definitions from our previous paper [18], suitably
simplified according to the focus of the present paper. The simplifications are only
for the purpose of presentation, and our results can be adapted to the original
data model, which provides facilities for immobilizing and blocking specific pieces
of a complex.

The overall structure of a DNA complex is abstracted in the notion of pre-
complex. Formally, a pre-complex is a 4-tuple (V,L, λ, µ) where

1. V is a finite set of nodes;
2. L ⊆ V × V is a finite set of directed edges without self-loops (i.e., (v, v) is not

in L for all v ∈ V );
3. λ : V → Σ ∪ Σ̄ is a total function labeling the nodes;
4. µ ⊆ {{v, w} | v, w ∈ V and v 6= w} such that each node occurs in at most one

pair in µ (thus µ is what is known as a partial matching). Note that the pairs
in µ are unordered.

Let C be a pre-complex as above. A strand of C is simply a connected com-
ponent of the directed graph (V,L), so ignoring µ. The length of a strand is its
number of nodes. A sticker complex now is a pre-complex satisfying the following
restrictions:

1. Each node has at most one incoming and at most one outgoing edge. Thus,
each strand has the form of a chain or a cycle.

2. Strands are homogeneously labeled, in the sense that either all nodes are la-
beled with positive symbols, or all with negative symbols. Naturally, a strand
with positive (negative) symbols is called a positive (negative) strand.

3. Every negative strand has length one or two; if it has length two, then it
must have a single edge (i.e., it cannot be a 2-cycle). Negative strands are also
referred to as “stickers”.

4. Matchings by µ only occur between complementarily labeled nodes: formally,
if {x, y} ∈ µ then λ(y) = λ(x).

In this way, the edges of a sticker complex indicate the sequence order within
strands, and the matching µmakes explicit where stickers have annealed to positive
strands.

We will also refer to sticker complexes simply as “complexes”.
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Fig. 1 Example of a sticker complex. The dotted lines denote the matching µ.

(i)
(ii)

Fig. 2 On the left of (i) and (ii), two different complexes; on the right of (i) and (ii), a
depiction of their respective plausible realizations in DNA (recall that each node in the complex
represents a DNA sequence, depicted here as thick blue lines).

Example 1 A simple example of a complex is depicted in Fig. 1. The alphabet
used is {a, b, c}. The complex consists of ten nodes 1, . . . , 10, labeled as follows:

node x : 1 2 3 4 5 6 7 8 9 10
label λ(x) : a b ā b̄ c̄ a b c a a

The nodes are organized in five strands: the negative strand ā of length 1, two
copies of the positive strand ab of length 2; the negative strand b̄c̄ of length 2; and
the positive strand caa of length 3. More formally, we have

L = {(1, 2), (4, 5), (6, 7), (8, 9), (9, 10)}.

The matching µ contains the two unordered pairs {2, 4} and {5, 8}. ut

In graphical depictions of complexes we often omit the identity of the vertices,
and represent each vertex by its label (this is done, e.g., on the left-hand side of
Fig. 2).

Remark 1 Because stickers are short, there is no need in our model to require that
annealed stickers run in complementary (5′–3′ vs 3′–5′) directions with respect to
the positive strands they are annealed to. Indeed, for a sticker of length one, the
complementarity is already built into the label; stickers of length two can fold so
as to run in complementary direction. Fig. 2 gives an illustration. ut

Note that, in a complex, not all nodes that can be matched must be matched:
for example, in Fig. 1, the sticker ā is not annealed, but could anneal to the four
different nodes labeled a. Indeed, it is the hybridization operation, defined below,
that will perform all possible matchings.
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Components and redundancy. We say that two strands s and s′ in a complex are
bonded if there exists some node v in s and some node v′ in s′ with {v, v′} ∈ µ.
When two strands are connected, possibly indirectly, by this bonding relation,
we say they belong to the same component. Thus, a component of a pre-complex
is a substructure formed by a maximal set of strands connected by the bonding
relation. Put another way, whereas a strand was defined as a connected compo-
nent ignoring µ, a component is a connected component not ignoring µ. Since
components are complexes themselves, we will use the same notation to denote
them.

Example 2 The complex from Example 1 has three components: one consisting of
the single strand ā, one consisting of the single strand ab, and one formed by the
three strands ab, b̄c̄ and caa. ut

The intention of our model is that a complex defines the structural content of
a test tube. The test tube, however, will in practice hold copies in surplus quantity
of each component. Thus, each component of a complex stands for possibly mul-
tiple occurrences. We formalize this intention using the notions of subsumption,
equivalence, and minimality.

A complex C is said to subsume a complex C′ if for each component D′ of
C′, there exists an component D in C that is isomorphic to D′. Two complexes C
and C′ are said to be equivalent if they subsume each other. A component D of a
complex C is called redundant if some other component of C is isomorphic to D.
Note that removing a redundant component from C yields a complex that is still
equivalent to C.

Remark 2 Isomorphism of sticker complexes can be decided in polynomial time
by depth-first search. Indeed, if C and C′ both consist of a single component, v is
a node of C, and v′ is a node of C′, then there is at most one isomorphism from
C to C′ mapping v to v′, and this isomorphism can be traced out by depth-first
search, following the chain or cycle shape of strands, and the partial matching µ.
Depth-first search is in linear time, which yields an isomorphism check for single
components in cubic time (try all combinations of v and v′). This algorithm then
easily extends to complexes C and C′ with multiple components, by matching the
components of C to the components of C′. This efficient isomorphism check is in
contrast to the problem of general graph isomorphism, which is not known to be
decidable in polynomial time. We thus see that sticker complexes form a restricted
family of graphs. ut

4 Hybridization

We give a purely declarative definition of hybridization, in a few steps. We define
the two auxiliary notions of “hybridization extension” and “redundant variation”.
This will allow us to define the fundamental notion of “multiplying hybridiza-
tion extension (MHE)”. The final results of hybridization are then defined as the
“saturated” MHEs; those that consist only of “finished” components.

Let C = (V,L, λ, µ) and C′ = (V ′, L′, λ′, µ′) be two complexes. We call C′ a
hybridization extension of C if V ′ = V , L′ = L, λ′ = λ, and µ′ is an extension
of µ, i.e., µ′ ⊇ µ. A complex C′ is said to have maximal matching if the only
hybridization extension of C′ is C′ itself.
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Example 3 The complex from Example 1 does not have maximal matching; we
can properly extend it by adding the pair {3, 9} to µ. Alternatively, instead of 9,
we could have taken 1, or 6, or 10. Thus the complex has, apart from itself (which
is a trivial hybridization extension), four different (non-equivalent) hybridization
extensions. These four extensions all have maximal matching, since 3 is the only
negatively labeled node that is not yet matched. ut

Let C and C′ again be complexes. We call C′ a redundant variation of C, simply
if C subsumes C′. Note that C′ may contain redundant components. Hence, the
recipe to produce a redundant variation is simply to take, for every component of
C, zero, one, or more copies. The multiplicities arte important.

Hybridization is now defined in terms of multiplying hybridization extensions
(MHEs), which, by applying redundant variations, account for the presence of
surplus copies of components participating in the hybridization. Let C and C′

again be two complexes. We call C′ an MHE of C if C′ is a hybridization extension
of some redundant variation C′′ of C.

The notion of MHEs is invariant under equivalence, both on the input side as
on the output side:

Proposition 1 Let C1 and C2 be two equivalent complexes.

1. A complex C′ is an MHE of C1 if and only if C′ is an MHE of C2.
2. C1 is an MHE of a complex C if and only if C2 is an MHE of C.

We are not quite finished with the notion of MHE, however. Indeed, an MHE
may have “unfinished” components. Formally, we call a component D of an MHE
unfinished if there exists another MHE in which D occurs bonded within a larger
component; otherwise it is called finished. An MHE without any unfinished com-
ponents is called saturated.

Example 4 None of the four hybridization extensions of the complex discussed
in Example 3 is saturated. Indeed, as long as a component has an unmatched
a, that component is unfinished because of we can add a copy of the sticker ā.
Specifically, we can finish the large component (consisting of the strands ab, b̄c̄,
and caa) by matching each unmatched a to a fresh copy of ā, yielding the finished
MHE component shown in Fig. 3 (left). Likewise we can finish the component
consisting of the single strand ab by matching the a to a copy of ā, as shown in
Fig. 3 (right). Finishing the component consisting of the single sticker ā can be
done in two ways: by bringing in a copy of the large component, we get the same
result as finishing that large component, and by bringing in a copy of the strand
ab, we get the same result as finishing that strand. We conclude that there are
precisely two distinct finished MHE components. ut

Example 5 A complex may have a large number of different finished MHE com-
ponents: exponentially many in the size of the complex. For example, consider the
complex Cn consisting of the following strands:

– a positive strand a . . . a of length n consisting of n nodes all labeled a;
– a sticker āb̄;
– a sticker āc̄.
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Fig. 3 Finished MHE components for the complex shown in Fig. 1.

Fig. 4 Illustration for Example 6.

Up to equivalence, there are precisely 2n finished MHE components for Cn. Each
possibility is obtained by annealing, to each node of the positive strand, a copy of
either the first or the second sticker. ut

We finally define:

Definition 1 Let C be a complex. The hybridization of C equals the disjoint
union of all finished MHE components for C.

Termination. A fundamental issue regarding the above definition is that the result
of hybridization as defined may be infinite, as shown next.

Example 6 Consider the simple complex consisting of two strands ab and b̄ā and
no matchings. For any number n, using n copies of ab and n copies of b̄ā, we can
produce the MHE component shown in Fig. 4 for n = 3. This component could also
be finished, by matching the remaining a shown on the left with the remaining ā
on the right, effectively creating a ring structure. (As always, in the figure, ā and b̄
are shown as A and B.) Different numbers n yield nonequivalent (non-isomorphic)
MHE components, thus the number of potential MHE components is infinite. ut

Mother Nature computes the result of a hybridization by composing MHE’s
using the available material in the test tube. When, for a given complex C, there
are actually infinitely many nonequivalent MHE’s, we say that hybridization does
not terminate for C, or shorter, that C is nonterminating ; otherwise, we say that
hybridization terminates, or shorter, that C is terminating.

Example 7 So, the complex discussed in the previous example is nonterminating.
In contrast, the example complex of Fig. 1 is terminating, as we have seen in
Example 4. Also the complexes Cn discussed in Example 5 are terminating. ut

In practice, when we have termination of hybridization, a test tube prepared
with sufficient quantities of each component of the complex holds, in principle,
sufficient material to produce all molecular species that can be the result of hy-
bridization. If sufficient quantities are present, adding even more material will
not yield new results. Of course, in practice, a test tube is always finite and the
hybridization reaction will, under normal conditions, always “terminate” (reach
equilibrium). But the point is that, when hybridization does not terminate for
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a complex, adding ever more material can, in principle, result in ever more new
molecular species (MHE components) to be produced. In this sense, the potential
result of the hybridization is indeed infinite.

5 Deciding termination

When designing DNA complexes for DNA computing, it is of course highly desir-
able to recognize easily whether or not a given complex is terminating. Our main
result is the following.

Theorem 1 A complex is terminating if and only if its hybridization graph does
not contain an alternating cycle.

Corollary 1 Termination of hybridization is decidable in polynomial time.

We still need to define the relevant terms used in our theorem, i.e., “hybridiza-
tion graph” and “alternating cycle”. The Corollary will follow since the hybridiza-
tion graph has the same number of nodes as the given complex, and checking for
the presence of an alternating cycle can be done in polynomial time.

The hybridization graph of a complex is an instance of a “partitioned graph”.
A partitioned graph in general is a triple (V, π,E) where (V,E) is an undirected
graph and π is a partition of the node set V . Recall that an undirected graph
(V,E) consists of a set V of nodes and a set E ⊆ {{v, w} | v, w ∈ V and v 6= w}
of unordered pairs of nodes (undirected edges). Recall that a partition of a set V
is a set of nonempty, pairwise disjoint subsets of V , called blocks, such that their
union equals V .

Now given a complex C, the hybridization graph for C is the partitioned graph
H = (V, π,E) defined as follows:

– V equals the set of nodes of C;
– π contains, for each component D of C, the set of nodes belonging to D as a

block;
– Let F ⊆ V be the set of “free” nodes of C; a node is called free if it is

not matched to another node by µ. Then E equals {{v, w} | v, w ∈ F and
λ(w) = λ(v)}.

Thus, whereas the matching µ in C represents the pairs of nodes that are al-
ready annealed, the set E contains the pairs of nodes that may still be annealed
(typically, in an MHE of C)2.

Example 8 The hybridization graph for the complex of Fig. 1 is shown in Fig. 5.
The blocks are depicted as hyperedges (closed curves enclosing the nodes belonging
to the same block). The undirected edges are shown as dashed lines. ut

The notion of alternating cycle can be defined in general in any partitioned
graph G = (V, π,E). A path in G is a sequence of nodes v1, . . . , vn such that for
each i with 1 ≤ i < n, we have either an

2 Note that in our theory only nodes with perfectly complementary labels may anneal.
Of course, in pratice, node labels would be implemented as DNA codeword domains. With
increasing number of codewords, the probability of imperfect hybridizations increases. Indeed,
error analysis, and experimental and numerical validation of our model are important topics
for future research.
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Fig. 5 Example of a hybridization graph.

edge move: {vi, vi+1} ∈ E, or a
block move: vi 6= vi+1 and they belong to a common block.

The path is said to be alternating if edge moves happen for each odd i, and block
moves happen for each even i (always for 1 ≤ i < n). When the path is alternating,
it is said to be an alternating cycle when n is odd and at least 3, and vn = v1.

Example 9 Consider the hybridization graph for the complex of Fig. 1, as shown
in Fig. 5. We refer to the node identifiers given in Example 1. Two examples of
alternating paths are p1 = 3, 9, 1, 3 and p2 = 3, 1, 10, 3, 6, 7. Note that p1 is not an
alternating cycle; although it satisfies vn = v1, its length, 4, is not odd. Indeed,
this hybridization graph does not admit an alternating cycle, since the only free
node with a negative label, ā, is in a component by itself. ut

Example 10 Consider the complex discussed in Example 6. Its hybridization graph
has four nodes partitioned in two blocks. One block, corresponding to the compo-
nent ab, consists of two nodes 1 and 2 labeled a and b, respectively; the second
block, corresponding to the component b̄ā, consists of two nodes 3 and 4 labeled
b̄ and ā, respectively. There are two undirected edges, namely, {1, 4} and {2, 3}.
This hybridization graph admits an alternating cycle in the form of 1, 4, 3, 2, 1. ut

The above two examples are in line with Theorem 1. Indeed, the complex
of Fig. 1 is terminating, and indeed its hybridization graph does not have an
alternating cycle; the complex of Example 6 is nonterminating, and indeed its
hybridization graph has an alternating cycle.

5.1 Proof of Theorem 1

The only-if implication of Theorem 1 is relatively easy to prove:

Lemma 1 If the hybridization graph of C has an alternating cycle, then C is
nonterminating.

Proof From any alternating cycle p = v1, . . . , vn we can construct an MHE com-
ponent Cp as follows. For each even i with 1 ≤ i < n, we have a block move
in the path: let Di be the common component of C to which vi and vi+1 both
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belong. Take distinct copies D′i of all components Di; there are bn/2c of them in
total. We use D′0 as a synonym for D′n−1. Then Cp consists of all the copies D′i,
to which we perform the following hybridization extension in two phases. In the
first, connection phase, we match, for each edge move {vi, vi+1} in the path, the
corresponding nodes: the node corresponding to vi belongs to D′i−1 and the node
corresponding to vi+1 belongs to D′i. In this way the separate components are
connected into a single component. In the second, completion phase, we perform
additional hybridization extension arbitrarily so as to obtain maximal matching.
The result is an MHE component Cp.

Now for any natural number k, we can form the alternating cycle pk obtained
by repeating p, k times. Formally, p1 is just p, and if pk is the sequence x1, . . . , xN ,
then pk+1 is defined as the sequence x1, . . . , xN−1, v1, . . . , vn. Now as above we can
construct, for any natural number k, the MHE component Cpk . These components
grow strictly larger for increasing values of k and are thus nonisomorphic. Hence,
hybridization does not terminate. ut

The proof of the if-implication involves a constructive characterization of MHE
components in the form of “hybridization templates”, which we present here.

We first need the following auxiliary notion. Let G = (V,E) and G′ = (V ′, E′)
be two undirected graphs, and let f : V → V ′ be a mapping. Then f is called a
semi-strong homomorphism from G to G′ if, for all u, v ∈ V , we have the following:

– if {u, v} ∈ E then {f(u), f(v)} ∈ E′; and
– if {f(u), f(v)} ∈ E′ then {u,w} ∈ E for some w ∈ V , or {v, w} ∈ E for some
w ∈ V .

The first condition is the standard requirement for homomorphisms; the converse
of that condition would state the standard requirement for what is known in
universal algebra as a “strong” homomorphism. The second condition, however,
states only a weak converse (hence the name “semi-strong”), in the sense that if
there is an edge between f(u) and f(v), then either u or v have to be involved in
an edge, but not necessarily with each other.

Now let C = (V,L, λ, µ) be a complex with hybridization graph H = (V, π,E).
A hybridization template for C is a pair T = (t, f) where t = (V t, πt, Et) is a
partitioned graph and f is a semi-strong homomorphism from (V t, Et) to (V,E),
such that:

1. t is connected, i.e., there is a path between any two distinct nodes (using the
notion of path in partitioned graphs as defined earlier);

2. Et is a partial matching, i.e., each node of V t occurs in at most one edge in
Et; and

3. for each block q of πt there is a block q′ of π such that the restriction f |q of f
to q is a bijection from q to q′, i.e., f |q is injective and the image of f |q equals
q′.

From a hybridization template T = (t, f) for C, and C itself, we can construct
a sticker complex comp(T ) = (V T , LT , λT , µT ) as follows:

– V T = V t;
– LT = {(x, y) | x and y belong to a common block and (f(x), f(y)) ∈ L};
– λT (x) = λ(f(x));
– µT = Et ∪ {{x, y} | x and y belong to a common block and {f(x), f(y)} ∈ µ}.
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Proposition 2 The MHE components are exactly the complexes of the form comp(T )
with T a hybridization template.

Proof Let T = (t, f) be a hybridization template. We show that comp(T ) is an
MHE component. Each block q of t represents a component Dq of C, as determined
by f . In comp(T ), all directed edges from L, all labelings, and all matchings are
inherited from Dq. Additional matchings are present in comp(T ) in the form of
the set Et. Since t is connected, comp(T ) consists of a single component.

To show that comp(T ) is an MHE component it remains to show that comp(T )
has maximal matching. Thereto, let x and y be nodes of comp(T ) with comple-
mentary labels; we must show that x and y cannot both be free. So, assume x is
free; we will show that y is matched in µT .

First, note that f(x) is free in C. Indeed, suppose {f(x), v} ∈ µ for some v ∈ V .
Then f(x) and v belong to the same block of π. Let z be the node in the same
block as x such that f(z) = v. Then {x, z} ∈ µT , which is impossible because x is
free in comp(T ). Now there are two possibilities:

– f(y) is also free in C. Then {f(x), f(y)} ∈ E. Hence, since f is a semi-strong
homomorphism from (V t, Et) to (V,E), at least one of x or y must be matched
in Et. This must be y, since x is free in comp(T ). Hence y is matched in Et ⊆ µT

as desired.
– f(y) is matched in µ, so {f(y), v} ∈ µ for some v ∈ V . Analogously to the

reasoning used above for f(x), this implies that y is matched in µT as desired.

Conversely, let D be an MHE component. We show that D equals comp(T )
for some hybridization template T . By definition, D = (V ′, L′, λ′, µ′′) is a hy-
bridization extension with maximal matching of some redundant variation C′ =
(V ′, L′, λ′, µ′) of C. So we can form the partitioned graph t = (V t, πt, Et) where
V t equals V ′; πt is formed by the components of C′; and Et equals µ′′ \ µ′. Since
D forms a single component, t is connected. Since each component of C′ is isomor-
phic to some component of C, we can define f : V ′ → V such that, for every block
q of t, the restriction f |q is equal to the corresponding isomorphism. Since D has
maximal matching, f is a semi-strong homomorphism. Now clearly comp((t, f))
equals D. ut

A hybridization template (t, f) is called maximal if there is no other hybridiza-

tion template (t′, f ′), other than (t, f) itself, such that V t ⊆ V t′ ; πt ⊆ πt′ ;

Et ⊆ Et′ ; and f ⊆ f ′. From the previous proposition we obtain:

Corollary 2 The finished MHE components are exactly the complexes of the form
comp(T ) with T a maximal hybridization template.

Remark 3 One can characterize the maximal hybridization templates as follows.
They are exactly the hybridization templates that satisfy the stronger definition
obtained by replacing, in the definition of semi-strong homomorphism, the second
condition by the following:

– if {f(u), v′} ∈ E′ for some v′ ∈ V ′, then {u,w} ∈ E for some w ∈ V . ut

The proof of Theorem 1 also invokes the following lemma which may be inter-
esting in its own right:
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Lemma 2 Let H be a partitioned graph with c distinct blocks. If H admits no
alternating cycle, then the length of any alternating path in H is at most 4c+ 2.

Proof Let p = v1, . . . , vn be an alternating path in H = (V, π,E) and let q be a
block of π. For even i with 1 ≤ i < n, we say that q occurs in p at i if vi and
vi+1 belong to q (block move). Now assume the same block q would occur at three
different i, say, i1 < i2 < i3. If vi2+1 = vi1+1, then the subpath of p starting at
i1 + 1 and ending in i2 + 1 is an alternating cycle, which is impossible. Hence
vi2+1 6= vi1+1. Now either vi3 6= vi1+1 or vi3 6= vi2+1. In the first case, {vi3 , vi1+1}
is a legal block move and by substituting vi1+1 at position i3 + 1 in p, we obtain
an alternating cycle starting at i1 + 1 and ending at i3 + 1. In the second case, we
similarly obtain an alternating cycle. We conclude that no block can occur more
than twice in p. In other words, the number of block moves in an alternating path
is at most 2c. The number of block moves in an alternating path of length n is
b(n− 1)/2c. Hence, we have b(n− 1)/2c ≤ 2c which yields n ≤ 4c+ 2. ut

We are finally ready to prove the remaining direction of Theorem 1:

Lemma 3 If the hybridization graph of C has no alternating cycle, then C is
terminating.

Proof To prove that there are only a finite number of nonisomorphic MHE com-
ponents, we use Proposition 2 and prove that there are only a finite number of
nonisomorphic hybridization templates. Here, we define an isomorphism between
two hybridization templates (t, f) and (t′, f ′) as an isomorphism ϕ from t to t′

such that f ′(ϕ(x)) = f(x).

Let H = (V, π,E) be the hybridization graph of C. For any hybridization
template T = (t, f) we can consider the blocks tree of t. The nodes of this tree are
the blocks of πt; the undirected edges are the pairs {q, q′} such that {v, v′} ∈ Et

for some v ∈ q and some v′ ∈ q′. Note that it is impossible for some {v, v′} to
be in Et with v and v′ belonging to the same block q, as this would imply the
alternating cycle v, v′, v in H. This “blocks tree” is really a tree (undirected graph
without cycles); since Et is a partial matching, a cycle in the blocks tree would
imply an alternating cycle in H, which does not exist.

If we know f , then we can reconstruct t from its blocks tree. Also, for a given
t, there are only a finite number of possible hybridization templates (t, f); the
number of possibilities for f is finite since H is finite. Hence, we are done if we can
show that there are only finitely many nonisomorphic blocks trees. This is ensured
by the following two properties:

1. The diameter of any blocks tree is at most 4c+ 2. Indeed, since Et is a partial
matching, any simple path in the blocks tree implies an alternating path in H,
of the same length. Hence, by Lemma 2, the length of any simple path in the
blocks tree is at most 4c+ 2.

2. The fan-out of any node in any blocks tree is at most n, where n is the number
of nodes of C. Indeed, let q be a block of t. Then q has at most n nodes; by
the definition of the edges of the blocks tree, taking into account that Et is a
partial matching, this gives a maximum of n neighbors of q in the blocks tree.

ut
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6 Complexity issues

Assume hybridization terminates for a given sticker complex C. Then two follow-
up questions come up related to the complexity of the result of hybridization.
How many finished MHE components can there be? And, how large can a single
finished MHE component become?

As we have already seen in Example 5, the number of finished MHE components
may well grow exponentially in the size of the complex. Also the size of MHE
components can grow exponentially (details omitted). Unlike Example 5, however,
the latter can only happen when the alphabet is allowed to grow with the size of
the complex. Usually, however, the alphabet is fixed by the application setting.
Indeed we show:

Proposition 3 Over the class of terminating complexes over any fixed alphabet,
the size of the largest MHE component for a complex C grows only polynomially
in the size of C.

Proof We reason as in the proof of Lemma 3. A rooted tree with fan-out n and
depth d has at most

Pd
i=0 n

i = (nd+1 − 1)/(d − 1) nodes. The blocks tree of a
hybridization template (where an arbitrary block is chosen as root) has fan-out
at most n, and has depth at most d = 8s + 2, by Lemma 4. Since s is fixed, we
obtain a number of blocks that is polynomial in n. Since each block itself has size
at most n, the result follows. ut

Interestingly, the proof of this proposition relies on the following counterpart
to Lemma 2. The two lemmas are complementary as Lemma 2 does not assume
anything about the alphabet, whereas Lemma 4 does not assume anything about
the complex.

Lemma 4 Let H be the hybridization graph of a complex over positive alphabet
Σ. Let s be the number of symbols in Σ. If H admits no alternating cycle, then
the length of any alternating path in H is at most 8s+ 2.

Proof Let p = v1 . . . vm be an alternating path in H and let a ∈ Σ ∪ Σ̄. For even
i with 1 ≤ i < m (block move), we say that a occurs in p at i if λ(vi) = a or
λ(vi+1) = a; in the first case we say that a occurs in first place, in the second
case we say that a occurs in second place. It is well possible that a occurs at some
i both in first and second place. Now assume a would occur at three different i
(always even). Then it must either occur at least twice in first place, or twice in
second place:

– a occurs in first place at some i and at some j > i. Note that λ(vj−1) = ā.
Then vj−1, vi, . . . , vj−1 is an alternating cycle; a contradiction.

– a occurs in second place at some i and some j > i. Note that λ(vi+2) = ā.
Then vj+1, vi+2, . . . , vj+1 is an alternating cycle; a contradiction.

We conclude that no symbol from Σ ∪ Σ̄ can occur in more than two block moves
of p. Hence, the number of block moves in an alternating path cannot be greater
than 4s. The number of block moves in an alternating path of length m equals
b(m− 1)/2c, which yields m ≤ 8s+ 2. ut
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Remark 4 Since the number of possible graphs on a polynomial number of nodes is
singly-exponential, as a corollary to Proposition 3, we obtain that over the class of
terminating complexes over a fixed alphabet, the number of MHE components for

a complex C is bounded from above by 2nO(1)
, where n is the size of C. Hence, Ex-

ample 5 essentially illustrates the worst that can happen, i.e., double-exponential
or worse is impossible. ut

Our final result presents a restriction on classes of complexes, which we call
“c-bounded choice” (for a natural number c), so that hybridization is polynomial
on the class of c-bounded complexes. It remains to be investigated further how
practicable this restriction is, i.e., how many applications can be modeled using
sticker complexes that are c-bounded for some c. A positive indication is that only
4-bounded complexes are needed to simulate the relational algebra; to verify this
we have inspected the procedures given in an earlier paper [18].

To define the notion of c-boundedness, we first need the notion of a “choice
node” of a complex. This is a free node having at least two neighbors in the
hybridization graph. Since the edges of the hybridization graph are solely defined
in terms of free nodes and their labels being complementary, we see the following,
for any label a ∈ Σ ∪ Σ̄: a node v labeled a is a choice node if and only if it is
free and there exist at least two free nodes labeled ā. Consequently, if there are at
least two free nodes labeled ā, then all free nodes labeled a are choice nodes; in
the other case, no node labeled a is a choice node.

Now for any natural number c, we say that a complex C has c-bounded choice,
or shorter, is c-bounded, if for each component D of C, the number of nodes in
D that can reach a choice node by an odd alternating path is at most c. Here,
naturally, we say that a node w is reachable by an odd alternating path from a
node v, if there is an alternating path v1, . . . , vn, with n odd, v1 = v and vn = w.
In particular, taking n = 1, any node is reachable from itself by an odd alternating
path. As a consequence, in a c-bounded complex, every component has at most c
choice nodes.

Example 11 Recall the complexes Cn discussed in Example 5. Recall that the
number of finished MHE components for Cn is 2n. Since there are two free ā-
nodes, the n nodes labeled a are all choice nodes. As these n nodes all belong to a
common component, the smallest c such that Cn is c-bounded is n. Hence, there
is no fixed c such that all Cn, for all n, are c-bounded.

Suppose now, we modify Cn to C′n by removing the sticker āc̄. Then the a-nodes
are no longer choice nodes. The only remaining choice node C′n is the ā-labeled
node. Hence, each C′n is 1-bounded. Now note that each C′n has only one finished
component, obtained by annealing each a-node to the ā-node of a fresh copy of
the sticker āb̄. In particular, hybridization is not exponential on the class of C′n
complexes for all n. ut

The above example illustrates our result:

Theorem 2 Let c be a natural number. Over the class of terminating, c-bounded
complexes over a fixed alphabet, the hybridization of any complex C has size poly-
nomial in the size of C.

Proof Since the size of each MHE component is polynomial by Proposition 3,
we must only show that the number of nonisomorphic finished MHE components



16 Brijder, Gillis et al.

is polynomial. Using Corollary 2, we can focus on the number of nonisomorphic
maximal hybridization templates.

We use blocks trees as introduced in the proof of Lemma 3. Let C be a c-
bounded, terminating complex with n nodes, and let H = (V, π,E) be its hy-
bridization graph. Up to isomorphism, a hybridization template (t, f) of C can be
represented by the blocks tree of t, viewed as an abstract tree, augmented with
a labeling (i) of each tree node (block q of πt) with the component of C (block
q′ of π to which f maps q) it represents; and (ii) of each tree edge {q1, q2} with
{(q1, f(v1)), (q2, f(v2))} where v1 ∈ q1 and v2 ∈ q2 such that {v1, v2} ∈ Et (this
pair {v1, v2} is unique, since a second such pair would imply an alternating cycle
in the hybridization graph). If the hybridization template is maximal, each tree
node labeled with a component D has an edge for each node of D that has an
edge in the hybridization graph.

We must show that, over c-bounded complexes, there are only polynomially
many such maximal augmented blocks trees. We can construct all possible aug-
mented blocks trees using a recursive non-deterministic procedure which we de-
scribe next. The recursive step of the procedure takes as parameter a tree node q
labeled by some component D. Initially, it is called on a newly created root node,
labeled with a nondeterministically chosen D. There are at most n choices for D,
where n is the number of nodes of C.

To describe the recursive step, we need the notion of “port”. A “port” is a
pair (q, u) where q is a tree node and u is a node in the component D that labels
q, such that u occurs in E, i.e., has an edge in the hybridization graph. When q
has an edge for u (formally, q has an edge such that the label contains (q, u)) we
say that the port is “closed”. Finally, note that if u is a choice node in D, then
(q, u) is a port. If (q, u) is a port but u is not a choice node, then the port is called
“one-way”.

The recursive step is divided in two phases: the deterministic phase, followed
by the choice phase. In the deterministic phase, we close all open one-way ports for
q. For each such port (q, u), we take the unique node w in C such that {u,w} ∈ E,
and let Du be the component of C that contains this w. We create a child node
r of q, label it with Du, and label the child edge with {(q, u), (r, w)}. We say we
have “closed” the open port. Note that r may have additional one-way open ports.
We close those as well, and we iteratively close all open one-way ports in newly
created nodes until there are no longer any open one-way ports. (This iteration
must terminate since C is terminating.)

We now have a subtree rooted at q, in which there are no open one-way ports,
but in which there can still be open choice ports. Since C is terminating, by
Lemma 4, the subtree has depth at most d = 8s+2. By the c-bounded restriction,
the subtree has at most

Pd
i=0 c

i nodes of the block tree that contain choice nodes.
Hence, in total the number of open ports is at most r = c ·

Pd
i=0 c

i. Note that
r = c · (cd+1 − 1)/(d − 1) = O(1). Each choice port is of the form (q′, u), with
q′ equal to q or to a descendant of q in the tree, created during the deterministic
phase. To close the choice port, there may be many possibilities. Each possibility
consists of a node w in C such that {u,w} ∈ E; we call w a “candidate” for u.
There are at most n possible candidates. The procedure chooses a candidate w for
each open choice port (q′, u) and closes the port as described above for one-way
ports. Then the procedure recurses on every newly created node.
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Let us examine the recursion tree of this recursive procedure. Since C is ter-
minating, by Lemma 4, the recursion is at most a constant d = 8s+ 2 deep. The
fan-out of the recursion tree is bounded by the constant r. Hence, each possible re-
cursion tree arising from a non-deterministic execution of the algorithm embeds in
the full tree of depth d and fan-out r, which has

Pd
i=0 r

i = (rd+1−1)/(d−1) = O(1)
nodes. For each node of the recursion tree, there are at most n choices for the non-
deterministic algorithm. Hence, there are nO(1) possible outcomes of the algorithm,
which is polynomial as desired. ut

Remark 5 Theorem 2 states that for c-bounded terminating complexes over a fixed
alphabet, the result of hybridization has polynomial size. By Definition 1 and
Proposition 3, this is the same as saying that the number of finished MHE compo-
nents is polynomial. Note that it is not true that the number of unfinished MHE
components is polynomial. For example, for each number n, consider a complex
Un with two components: one is the strand a . . . a (n times), and the other is the
sticker ā. There are 2n− 1 unfinished MHE components, by choosing a strict sub-
set of the n positive nodes, and annealing to each of them a copy of the sticker.
There is, however, a unique finished MHE component, obtaining by annealing a
copy of the sticker to all positive nodes. ut

Remark 6 There is no converse to Theorem 2 in the sense that, if the result of
hybridization has polynomial size over some class K of complexes over some fixed
alphabet, then the complexes in K must be c-bounded for some fixed c. Take, for
example, the class K consisting of all complexes Ln, for every number n, where
Ln consists of four components: a strand d . . . d of length 2n; a strand a . . . a of
length n; and two stickers āb̄ and āc̄. The size of Ln is 2n + n + 4, and there are
2n finished MHE components for Ln, which is a number polynomial in the size of
Ln. Yet, the class K is not c-bounded for any fixed c, since Ln contains a strand
with n choice nodes. ut

7 Conclusion

A natural extension of our approach would be to account for probabilities or
error rates on the results produced (finished or unfinished) during hybrization. Of
course, error modeling in DNA computation, and secondary structure prediction,
are well-known research problems, e.g., [15,11].

In previous work [18] two of us have defined a database-oriented DNA pro-
gramming language, called DNAQL, with the goal of understanding the database
side of DNA computing. Various open problems remain in connection with this
language, including guaranteeing well-definedness through a type system, and un-
derstanding the expressive power.

Obviously, we would also like to see the sticker complex data model justified
physically (or understand what are the unrealistic aspects), either experimentally
or by simulation.
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