Temporal connectives versus explicit
timestamps in temporal query
languages

(preliminary report)

Serge Abiteboul, Laurent Herr, Jan Van den Bussche*
INRIA Rocquencourt®

Paris, France

Abstract

Some temporal query languages work directly on a timestamp repre-
sentation of the temporal database, while others provide a more implicit
access to the flow of time by means of temporal connectives. We study
the differences in expressive power between these two approaches. We
first consider first-order logic (i.e., the relational calculus). We show that
first-order future temporal logic is strictly less powerful than the rela-
tional calculus with explicit timestamps. We also consider extensions of
the relational calculus with iteration constructs such as least fixpoints or
while-loops. We again compare augmentations of these languages with
temporal left and right moves on the one hand, and with explicit times-
tamps on the other hand. For example, we show that a version of fixpoint
logic with left and right moves lies between the explicit timestamp ver-
sions of first-order and fixpoint logic, respectively.

1 Introduction

A simple, natural and common way of representing a temporal relational
database over a finite time period is to augment each relation with a “times-
tamp” column holding the time instants of validity of each tuple. Such repre-
sentations can then be queried using standard relational query languages with
built-in linear order on the timestamps. An alternative way of providing tem-
poral facilities to query languages is by means of constructs yielding a more
implicit access to the flow of time, such as the typical temporal connectives
next, previous, until, and since of temporal logic [9]. Tllustrations of these two
approaches can be found in [11]. The question of how temporal connectives
versus explicit timestamps in temporal query languages relate to each other
with respect to expressive power, arises naturally [7, 8]. In the present paper,
we study this question from various angles.

*On leave from the University of Antwerp. Research Assistant of the Belgian National
Fund for Scientific Research.

tINRIA, Domaine de Voluceau, Rocquencourt, B.P. 105, F-78153 Le Chesnay Cedex,
France.

TS-WHILE

~
~
~
~
~

T-WHILE TS-FIXPOINT

~ -
~ -
~ -
~ -

T-FIXPOINT

TS-FO ETL

Figure 1: The relative power of temporal languages. Solid upward edges indi-
cate strict containment. Dashed lines indicate that the strictness of the con-
tainment depends on unresolved questions in complexity theory.

First, we compare the relational calculus (i.e., first-order logic) with times-
tamps (TS-FO) to past-future first-order temporal logic (TL). We start by show-
ing that future first-order temporal logic (FTL) is strictly weaker than TL. This
should be contrasted with the conventional propositional case, where past con-
nectives are known to be redundant [9]. This result should be related to [1]
where it 1s shown that TL is strictly weaker than Ts-ro.

We also look at more powerful languages, in particular, the languages WHILE
and FIXPOINT which augment the relational calculus with while-loops and with
inflationary fixpoint iteration, respectively [2]. When used on timestamp rep-
resentations of temporal databases, they give rise to powerful temporal query
languages denoted by TS-WHILE and TS-FIXPOINT. Alternatively, they can be
extended with a more implicit access to the flow of time. We study their
extension with instructions for moving left and right in time, giving rise to
temporal query languages denoted by T-WHILE and T-FIXPOINT. In the case
of T-FIXPOINT, this involves extra non-inflationary language features which are
interesting in their own right.

We compare TS-WHILE, TS-FIXPOINT, T-WHILE, and T-FIXPOINT. We also
compare T-FIXPOINT with Ts-FO, and with ETL, an “extended” temporal logic
which is closely related to fixpoint extensions to temporal logic proposed in
the propositional setting [13, 12, 5]. Our results are summarized in Figure 1.
Note that the only new languages are T-FIXPOINT and T-WHILE. Note also the
central position of T-FIXPOINT. We believe this is an important language: it
can be evaluated in polynomial time; it accesses time only implicitly; and it
generalizes TL, TS-FO, and ETL.

The paper is organized as follows. In Section 2, we define temporal

I I I

I= |a b a
b d c
c

O/ A0 Ve
NN —=O OO

Figure 2: A temporal database and its timestamp representation.

databases and timestamp representations, recall TL, and compare it to TS-FO.
In Section 3, we recall WHILE, introduce T-WHILE, and compare it to TS-WHILE
and TS-FO. In Section 4, we recall the inflationary language FIXPOINT, study
its augmentation with certain non-inflationary features, and introduce the cen-
tral language T-FIXPOINT. In Section 5, we compare T-FIXPOINT to all other
languages. Finally, in Section 6, we indicate special cases of temporal databases
(including some notion of “local time”) where the distinction between explicit
versus implicit access to time in the context of WHILE and FIXPOINT disappears.
In this preliminary report, the proofs of the technical results are only sketched.

2 First-order temporal queries

A temporal database is a non-empty finite sequence I = Iy, ..., I, of instances
of a common relational database scheme. Each element of the sequence is called
a state. We can represent this sequence I as one single instance I of an extended
scheme, where each relation is extended with an additional column holding for
each tuple the numbers of the states at which the tuple belongs to the relations.
We call I the timestamp representation of I. More formally, for each relation
R, we have an extended relation R whose value in I is:

I(R) = | L(R) x {t}.

Furthermore, the total order on the timestamps is given in I in a binary
relation <.

Example 1 Consider the scheme consisting of a single unary relation S. Tem-
poral databases over this scheme are basically sequences of sets. An example
and 1ts timestamp representation are shown in Figure 2. [|

A very direct way to express temporal queries on I is to use first-order logic
(i.e., relational calculus) on the timestamp representation I. We denote this
temporal query language by TS-FO.

Example 2 On databases as in Example 1, the query “give the elements that
have been deleted but have later been re-inserted” can be expressed in Ts-FO
as

{z | (F)EHE")t <t AN <" ANS(z, 1) A=S(z, t') A S(x, 1)}
On the database of Figure 2, the answer to this query is {a,c}. [|

Note that queries expressed in TS-FO can also return timestamps. For ex-
ample, the query {t | (V&)(S(z,t) < S(x,0))} returns the numbers of all states
that are equal to the first state. However, in the remainder of this discussion,
we focus on queries returning data elements only.

An alternative way of expressing temporal queries is by using first-order
temporal logic (abbreviated TL). This language is defined on the original
database scheme, and does not involve timestamps. Instead, it extends the
relational calculus by adding the binary connectives since and until. Syntacti-
cally, they are used to build formulas in the same way as the connective A: if
w and v are formulas, then so are ¢ since ¥ and ¢ until .

Semantically, TL formulas, when evaluated on a given temporal database I =
Iy, ..., I, are evaluated with respect to some given time instant ¢t € {0,...,n}.
Formally, let # be a TL formula, and let v be a valuation assigning domain
values in I to the variables that are free in 8. The satisfaction of § on I at ¢
under v, denoted I, ¢ |= 8[v], is defined as follows:

o If # is a relational atom R(x1,...,21), then It | 6[v] if (v(x1),...,
o(28)) € L(R).

o If # is an equality predicate = y, or is of one of the forms (Fz)p, (Vo),
-, or ¢ A1), satisfaction is defined in the standard way.!

e If 0 is of the form ¢ until ¢, then I,¢ |= 0[v] if

F >t Lt Bl AVE ct <t <t = Lt E pv].
e Finally, if 6 is of the form ¢ since v, then I,¢ |= 0[] if

F <t Lt Bl AVE <t <t =Lt E]

In the above, the quantifiers on ¢’ and ¢" naturally range over {0, ... n}.
Conventionally, queries expressed in TL are evaluated in the first state. So,

if 4 is a TL formula with free variables z1, ..., 3, then the result of the query

{x1,...,25 | 0} on a temporal database I is the relation {v | I,0 &= 0[v]}.

Example 3 The query of Example 2 can be expressed in TL as
{x | sometimesfuture(S(xz) A sometimesfuture(—S(z) A sometimesfuture S(z)))},

where sometimesfuture § is an abbreviation for 8 V (true until 8) (i.e., “@ is true
now or some time in the future”). The other usual temporal connectives next ¢
(“0 holds in the next state”), alwaysfuture @ (“6 holds now and always in the
future”), and the duals for the past (previous, sometimespast and alwayspast)
are also easily definable in terms of since and until.

Since TL queries are evaluated in the first state, one may wonder if the past
connective since is really necessary. Actually, in propositional TL (corresponding
to the case where the database scheme consists of nullary relations? only), it
is well-known that every formula is equivalent, with respect to the first time
instant, to a pure future formula (i.e., using only until as temporal connective).
We now show that this does not carry over to the setting of temporal databases:

1Quantifiers range over the active domain.
2 A nullary relation can either contain the empty tuple or be empty, and can thus be used
to represent a proposition (i.e., True or False).

Theorem 4 The yes/no query Q: (It > 0)(Va)(S(x,t) — S(x,0)) is express-
tble in TL but not in pure future TL.

Proof. (Sketch) We can express @ in TL as
next sometimesfuture(Va)(S(x) < sometimespast(first A S(z))),

where first is the formula —(#rue since true) (this formula is only true in the
first state).

To show that @) is not expressible in pure future TL, we use a combinatorial
argument. Let 6 be an arbitrary closed pure future TL formula. Let D be some
arbitrary fixed finite domain of data elements, let d be the cardinality of D, and
let n be some arbitrary fixed positive natural number. We consider temporal
databases Iy, ..., I,, and define the function F' on the “tails” of such databases
by

F(Il,...,fn) = {IO | (Io,[l,...,fn),o ':9}

If # would express the query @, then the cardinality of the image of ¥ would

be
> (%)
k=1
However, it can be shown that the cardinality of the image of F' is at most

24" for some integer o depending only on #. The theorem then follows by
elementary asymptotic calculus. [|

Note that, by symmetry, pure past TL (evaluated in the last state) is also
strictly weaker than TL. Pure past TL is often used to specify dynamic integrity
constraints [6].

We now turn to the question of how full past-future TL relates to TS-Fo.
Clearly, Ts-Fo 1s at least as expressive as TL. This inclusion is strict: it is
shown in [1] that the Ts-Fo-query Q: (3)(Ft')(Vx)(S(z,t) — S(x,t')) is not

expressible in TL.

3 Iterative queries

Let us first briefly recall how relational calculus is extended with iteration to
obtain the language WHILE. (See [2] for a more detailed presentation of the
languages WHILE and FIXPOINT considered in the following sections.)

An assignment statement is an expression of the form X := F, where X
i1s a auxtliary relation and E 1s a relational calculus query which can involve
both relations from the database scheme and auxiliary relations. Each auxiliary
relation has a fixed arity; in the above assignment statement, the arity of the
result of £ must match with the arity of X.

We can now build programs from assignment statements using sequencing
Py; Py and while-loops: if P is a program, then so is while ¢ do P od, where
@ is a relational calculus sentence. The query language thus obtained is called
WHILE. The execution of a program on a database instance is defined in the

natural manner. The result of the query expressed by a program is the value
of some designated output relation at completion of the execution?.

The language WHILE on the timestamp representations of temporal
databases provides a very powerful temporal query language which is denoted
by TS-WHILE.

Example 5 The query “give the elements that belong to all even-numbered
states” 1s not expressible in the relational calculus with timestamps, but it is
expressible in TS-WHILE as follows:

Current := {0};

A= {r | S(x,0))

while (3t)(3t)(Current(t) At =t +2) do
Current := {t' | (3t)(Current(t) ANt =t +2)};

A:=An{z| (3)(Current(t) A S(x,t))}

od
In the above program, A is the answer relation, and ' = ¢ + 2 is only an
abbreviation which can be directly expressed in terms of the order on the
timestamps. [|

An alternative temporal query language based on WHILE, not involving
timestamps, can be obtained by extending WHILE with more implicit temporal
features. One way to do this i1s to execute programs on a machine which can
move back and forth over time. Formally, we provide, in addition to assignment
statements, the two statements left and right which move the machine one step
in the required direction®. Furthermore, we partition the auxiliary relations into
state relations, which are stored in the different states, and shared relations,
which are stored in the memory of the machine itself. So, the values of (and
assignments to) state relations depend on the current state the machine is
looking at, while this is not the case for shared relations. Finally, we assume
two built-in nullary state relations First and Last, with First being true only in
the first state, and Last being true only in the last state. The machine always
starts execution from the first state.

The temporal query language WHILE extended with left and right moves
just described is denoted by T-WHILE.

Example 6 The query from Example 5 can be expressed in T-WHILE as fol-
lows:

shared A(1), Even(0);
A= (2] S(@)}; Bren = {0}
while —Last do
right;
Fven .= {()} — Fven;
if Fven then A:= An{z|S(x)}
od.

3If the execution loops indefinitely, the result is defined to be empty by default. Such
loops can always be detected [3].
4In the first state, left has no effect; in the last state, right has no effect.

In the above program, A and Even are both shared relations. Note how they
are “declared” as variables in the beginning of the program, indicating their
status of shared relation and their arity; we will always use such declarations
when presenting T-WHILE programs in the sequel. The if-then construct 1s only
an abbreviation and can be expressed in the relational calculus. [|

We next study the expressive power of T-WHILE. We will see in the next
section that it strictly encompasses TS-F0, and hence TL as well. We now show:

Proposition 7 T-WHILE s strictly contained in TS-WHILE.

Proof. (Sketch) The simulation of T-WHILE by TS-WHILE is straightforward,
using a Current relation as in Example 5 holding the current temporal position
of the machine.

The argument for strictness is based on complexity. The complexity of
TS-WHILE programs in terms of the length n of the temporal database only
is precisely PSPACE. However, the space complexity of T-WHILE programs in
terms of n is linear: we only have to store the state relations at each state. The
proposition then follows from the space hierarchy theorem [10].]

4 Fixpoint queries

General WHILE programs can only be guaranteed to run in polynomial space
(PsPACE) and hence their computational complexity is probably intractable
in general. However, there 1s a well-known restriction of WHILE which runs in
polynomial time (PTIME). This restriction consists of allowing only inflationary
assignment statements, of the form X := X U E (abbreviated X += F).
Executing an inflationary WHILE program with all auxiliary relations initialized
to the empty set will either finish or repeat a configuration after an at most
polynomial number of steps.® The computation has then “reached a fixpoint”
and the result of the query is determined. The query language thus obtained
is therefore called FIXPOINT.

Actually, on ordered databases®, a query is in PTIME if and only if it is
expressible in FIXPOINT. It is an open question whether FIXPOINT is strictly
weaker than WHILE, but it is shown in [4] that this question is equivalent to the
renowned open problem in computational complexity on the strict containment
of PTIME in PSPACE.

Similarly to TS-WHILE, the language FIXPOINT on timestamp representa-
tions of temporal databases provides a powerful yet computationally tractable
temporal query language denoted by TS-FIXPOINT.

Example 8 The query of Example 5 can also be expressed in TS-FIXPOINT as
follows:

Current += {0};

B t= (x| -5, 0)};

while (3t)(3)(Current(t) A = Current(t’) At =t + 2) do
Current += {t' | (3t)(Current(t) Nt =1+ 2)};

5As for WHILE, infinite loops can always be detected.
6This means that a linear order on the active domain is available.

Bd-.|-: {z | (3t)(Current(t) A—=S(x, 1))}

A 4= {2 | -B(2)}. n

Alternatively, we could depart from the language T-WHILE and restrict it
to inflationary assignments only, to obtain a PTIME temporal query language.
However, this language would be rather inflexible, since a pure inflationary re-
striction is an obstacle to the inherently non-inflationary back-and-forth move-
ments along time involved in temporal querying. (For simple temporal queries
involving only one single scan, this would suffice.)

This obstacle can also be analyzed using a complexity argument. As we
have seen in Proposition 7 for T-WHILE, the available space is linear in the
length n of the sequence. In FIXPOINT, the restriction to PTIME is achieved
by a careful inflationary use of space. Thus, the restriction of T-WHILE to
inflationary assignments would lead to a computation that would run in time
linear in n.

This problem can be alleviated by adding two extra, non-inflationary fea-
tures to standard FIXPOINT that allow to use non-inflationary variables in a
controled manner: “local variables” and “non-inflationary variables”.

(a) Local variables to blocks: Certain auxiliary relations can be declared as
local variables to program blocks. These relations can only be assigned
to within the block, and each time the block is exited, they are emptied.
(If the local variables are state relations, they are emptied in each state.)
Syntactically, if P is a program then [local Vi, ... V,; P]is a program
block with local auxiliary relations Vq, ..., V,.

(b) Non-inflationary variables: Certain auxiliary relations can be declared to
be non-inflationary. They can be assigned to without any inflationary
restriction. However, they are not taken into account in determining
whether the program has reached a fixpoint. (Hence, this remains in
PTIME.) Syntactically, these variables will be declared using the keyword
noninf.

The inflationary restriction of T-WHILE, to which the above two extra non-
inflationary features are added, yields a temporal query language that we call
T-FIXPOINT. Note that configurations of T-FIXPOINT programs now include the
position of the machine in time, which is taken into account to see whether the
computation has reached a fixpoint (i.e., repeated a configuration).

It is important to note that the extra features of local and non-inflationary
variables only make a difference in the context of T-FIXPOINT: in the standard
FIXPOINT language, they can be simulated as shown in the next proposition.
This result is interesting in its own right, since it facilitates expressing PTIME
computations in FIXPOINT. It also indicates a fundamental distinction between
temporal querying and standard querying.

Proposition 9 Adding program blocks with local variables and noninflationary
variables with the restrictions described above to FIXPOINT does not increase the
expressive power of the language.

Proof. (Sketch) The key observation is that, due to the inflationary nature
of the computation, a program block can be executed only so many times as

tuples are inserted in the auxiliary relations that are global (i.e., not local)
to this block. Hence, the contents of the local variables can be simulated by
versioning their tuples with the tuples inserted in the global variables since the
previous invocation of the program block (using Cartesian product). Emptying
the local variables then simply amounts to creating a new version. The old
versions are accumulated in a separate relation. In this manner the process is
entirely inflationary, as desired.

We can also simulate the noninflationary variables using a similar versioning
technique. The version consists of the tuples inserted in the ordinary, inflation-
ary variables since the previous non-inflationary assignment. Since the program
terminates as soon as the inflationary variables reach a fixpoint, we will not
run out of versions.]

We now illustrate the use of local variables and non-inflationary variables
in T-FIXPOINT by means of the following two examples. We first illustrate local
variables.

Example 10 Assume the database scheme contains two unary relations S
and 7. One way to express the temporal logic query {z | S(x) until T(xz)}
in T-FIXPOINT is as follows:

state Mark(0);
shared N(1), A(1);

Mark +={()};

while —Last do
right;
A4+=-NnNT,;
N +==S
od;

while = Mark do left.

In the above program, Mark is a (nullary) state relation which is used to mark
the initial state. Relations A and N are shared: A is the answer relation, and
N keeps track of the elements that are not in S in some state encountered
so far; if x 1s in N the first time it is found to be in T, x does not satisfy
S(z) until T(x). The final while-loop returns to the marked state (the use of
this will become clear immediately).

Suppose now that we have an additional third unary database relation R,
and we want to express the more complex temporal logic query {x | R(«) until
(S(z)until T(x))}. A simply way to do this would be to use the above program
as a subroutine. However, in doing this, care must be taken that the auxiliary
relations Mark, A and N are cleared after each invocation of the subroutine.
This 1s precisely the facility provided by the local variables in T-FIXPOINT.
Written out in full, we can thus express the query in T-FIXPOINT as follows:

shared Ny(1), Ao(1);
while —Last do
right;
[local state Mark(0);
local shared N(1), A(1);

Mark +={()};
while —Last do

right;
A4+=-NNT,;
N 4+=-S

od;

while = Mark do left;
Ag +=-NogN A
I;
Ny +=-R
od.]

We next illustrate the kind of computations that can be performed using
noninflationary variables.

Example 11 Assume the database scheme consists of a single binary relation
R. Consider the program:

noninf shared S(2);

S =R,
while —Last do
right;
S = {a.y | (3)(S(z,2) A R(=,)}
od.
At the end, if the last state of the temporal database is numbered n, S contains
the set of pairs (@, #y,) such that there exist zg,%1,...,#, with such that
(25, 2;41) is in R in the ¢-th state, for each i € {0,...,n — 1}.]

5 Comparisons

In this section, we first show that the expressive power of T-FIXPOINT lies
between TS-FO and TS-FIXPOINT. Then we recall the extended temporal logic
ETL and show that it can be simulated in T-FIXPOINT. Finally, we compare
T-FIXPOINT and T-WHILE.

We first show:
Theorem 12 Ts-FO s strictly contained in T-FIXPOINT.

Proof. (Sketch) FEach timestamp variable is represented by a nullary state
relation which is true exactly in the state numbered by the current value of the
variable, plus all states to the left of that state. The simulation now proceeds
by induction on the structure of the formulas. An atomic formula S(z,t) is sim-
ulated by searching for the state where ¢ is true and returning S in that state.
A comparison t < t' between timestamp variables is simulated by a left-to-right
scan checking whether ¢ is true before ¢'. Disjunction, negation, and existential
quantification of data variables are simulated using union, complementation,
and projection as usual. Finally, existential quantification of a timestamp vari-
able 1s performed by a while-loop which repeatedly sets the variable true from

left to right. Nested quantifiers are simulated using a nested program block for

each quantifier, with the marking relation as a local variable to that block.
The inclusion is strict because TS-FO cannot compute the transitive closure

of a graph stored in one of the states.]

Since TL is subsumed by TS-FO, as an immediate corollary we obtain that
TL is strictly contained in T-FIXPOINT.
We next show:

Theorem 13 T-FIXPOINT can be stmulated in TS-FIXPOINT.

Proof. (Sketch) The simulation is analogous to that of T-WHILE by TS-WHILE
of Proposition 7. The relation Current used there is non-inflationary, but by
Proposition 9 we know that this does not pose a problem. [|

It is not clear whether the converse of Theorem 13 holds. This is again
because of the linear space complexity in the number of states of T-WHILE (and
hence also of T-FIXPOINT) programs already mentioned in the proof of Propo-
sition 7. Indeed, we can reduce the containment of TS-FIXPOINT in T-FIXPOINT
to the containment of PTIME in the following class of complexity:

A problem is in PLINSPACE if it can be solved by a Turing machine
in polynomial time using only linear space.

Observe that if PTIME is included in PLINSPACE, then in particular, PTIME
is included in LINSPACE which is an open question of complexity theory. We
observe:

Theorem 14 Assuming ordered databases, TS-FIXPOINT = T-FIXPOINT ¢f and
only if PTIME = PLINSPACE.

Proof: (Sketch) Suppose that PTIME = PLINSPACE, and consider a
TS-FIXPOINT query (). Then @ is in PTIME, so in PLINSPACE. It is possible (al-
though somewhat intricate) to show that PLINSPACE queries can be computed
in T-FIXPOINT. The linear tape of the Turing machine is simulated by splitting
it into n pieces (where n is the number of states) and assigning one piece to
each state of the database. Non-inflationary variables are used to simulate the
non-inflationary nature of the Turing machine computation. Local variables are
used to “count” the number of steps (polynomial) that the machine is allowed
to perform. Thus) is in T-FIXPOINT.

Conversely, suppose that TS-FIXPOINT = T-FIXPOINT. Let) be a PTIME
problem. Consider the coding of this problem as a query on a propositional tem-
poral database (each letter in the input word is represented by one state). As
mentioned in the beginning of Section 4, any PTIME query on ordered databases
is expressible in FIXPOINT. Hence,) can be computed by a TS-FIXPOINT-
program. So) can be computed by a T-FIXPOINT-program. This program
runs in PTIME, and since the database i1s propositional, it uses only linear space.
Thus,) is in PLINSPACE. [|

Fixpoint extensions of temporal logic have been studied extensively in the
propositional case [9]. One of these extensions is the extended temporal logic

ETL [13, 12]. This language offers general temporal connectives expressed in
terms of regular expressions. Indeed, the standard connective ¢ until ¢ of TL
corresponds to searching for the regular expression ab*e, where the letter a
stands for True, b stands for ¢, and ¢ stands for . It is not difficult to define
ETL in the context of first-order predicate logic (i.e., databases) rather than
propositional logic (e.g., [5]). We can show:

Theorem 15 ETL is strictly contained in T-FIXPOINT.

Proof. (Sketch) The simulation of ETL in T-FIXPOINT is analogous to the
simulation of TL in T-FIXPOINT illustrated in Example 10. We now consider
the finite automaton corresponding to the regular expression, and for each state
of the automaton we use an auxiliary relation playing a role similar to N in
Example 10, keeping track of the status of the elements during the simulation
of the automaton. The state-changes of the automaton are performed while
moving over the states of the temporal database. The state-changing relations
must be implemented using non-inflationary variables, since the working of the
automaton is not inflationary.

The inclusion is strict because TS-FO cannot compute the transitive closure
of a graph stored in one of the states. (Actually, also on propositional databases
the inclusion is strict: ETL can only recognize regular properties [9], while it
is possible to write a T-FIXPOINT program checking whether the length of the
temporal database is a prime number.) [|

Finally, we compare T-FIXPOINT to T-WHILE. It turns out that their equality
is very unlikely:

Proposition 16 If T-FIXPOINT = T-WHILE, then PTIME = PSPACE.

Proof. (Sketch) Suppose that T-FIXPOINT = T-WHILE. Then, in particular,
T-FIXPOINT equals T-WHILE on temporal databases consisting of a single state,
and hence, FIXPOINT equals WHILE. As mentioned in the beginning of Section 4,
this is known to imply PTIME = PSPACE. [|

It remains open whether the converse of the above proposition holds. In
some sense, the equality of T-FIXPOINT and T-WHILE could even be more un-
likely that the equality of PTIME and PSPACE.

6 Local time

A temporal database I = Iy, ..., I, is said to have local time if at each state,
the number of that state is stored in some relation. Formally, assume the
database scheme contains a unary relation T7me. Then [has local time if for
eacht € {0,...,n}, Li(Time) = {t}. We naturally assume that the linear order
on timestamps is available to query languages working on temporal databases
with local time.

In practice, local time will often be present. It can be shown that on
temporal databases with local time, T-WHILE is equivalent to TS-WHILE and
T-FIXPOINT is equivalent to TS-FIXPOINT.

We will obtain this result as a corollary of the following much stronger result
stating that, in some cases, it is possible to simulate local time using the data

elements. Thereto, we need to assume that the temporal databases are ordered,
i.e., that a linear order is available on the active domain. (We will remove this
restriction later.)

Theorem 17 Let p be a natural number. On ordered temporal databases of
length at most dP, where d is the size of the active domain, T-WHILE is equiv-
alent to TS-WHILE and T-FIXPOINT is equivalent to TS-FIXPOINT.

Proof. (Sketch) First assume that local time is present. We already know
that TS-WHILE can simulate T-WHILE and that TS-FIXPOINT can simulate
T-FIXPOINT. To show the converse simulations, it suffices to show that the
timestamp representation of a temporal database with local time can be con-
structed in T-FIXPOINT, since T-FIXPOINT is a sublanguage of T-WHILE. This
is easily done using the following program (for simplicity assuming that the
database scheme consists of a single relation S):

while —Last do R += 5 x Time; right od

It now suffices to observe that local time can be simulated using the tuples
in DP. This is done by a straightforward T-FIXPOINT program which gener-
ates them one after the other in lexicographical order while moving over the
temporal database from left to right.]

Note that in order to prove Theorem 18 we do not even need the facilities
of local and noninflationary variables in T-FIXPOINT.

In the above, we assumed that the domain of the database is ordered. Using
a similar argument, the theorem remains true without the ordering assumption
if we replace dP by ?, where i the k-type index of the database for some k.
For the formal definition of type index we refer to [2]; we simply recall that it
is a polynomial in d on ordered databases, and that the k-type index” can be
computed in FIXPOINT. Now for temporal databases, one can show that 1t can
be computed in T-FIXPOINT; and it is easy to demonstrate that for databases
with local time, the k-type index is always larger than the number of states.
From these observations, it follows:

Corollary 18 On temporal databases with local time, T-WHILE s equivalent o
TS-WHILE and T-FIXPOINT is equivalent to TS-FIXPOINT.

References

[1] S. Abiteboul, L. Herr, and J. Van den Bussche. Temporal connectives
versus explicit timestamps in temporal query languages. Technical report,
INRIA, 1995. in preparation.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1994.

[3] S. Abiteboul and E. Simon. Fundamental properties of deterministic and
nondeterministic extensions of Datalog. Theoretical Computer Science,

78:137-158, 1991.

7 Actually, the collection of k-types with an order on them.

[4]

[5]

[10]

[11]

[12]

[13]

S. Abiteboul and V. Vianu. Generic computation and its complexity. In
Proceedings 23rd ACM Symposium on Theory of Computing, pages 209—
219, 1991.

A. Casanova and A. Furtado. On the description of database transition
constraints using temporal constraints. In H. Gallaire, J. Minker, and J.-M.
Nicolas, editors, Advances in Data Base Theory, pages 211-236. Plenum
Press, 1984.

J. Chomicki. History-less checking of temporal integrity constraints. In
Proceedings 8th International Conference on Data FEngineering. IEEE,
1992.

J. Chomicki. Temporal query languages: a survey. In D.M. Gabbay and
H.J. Ohlbach, editors, Temporal Logic: ICTL’94, volume 827 of Lecture
Notes in Computer Science, pages 506-534. Springer-Verlag, 1994.

J. Clifford, A. Croker, and A. Tuzhilin. On completeness of historical rela-
tional query languages. ACM Transactions on Database Systems, 19(1):64—
116, 1994.

E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 16. Elsevier
science publishers, 1990.

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

A. Tansel et al., editors. Temporal Databases: Theory, Design, and Im-
plementation. Benjamin/Cummings, 1993.

M.Y. Vardi. A temporal fixpoint calculus. In Proceedings 5th ACM Sym-
postum on Principles of Programming Languages, pages 250-259, 1988.

P. Wolper. Temporal logic can be more expressive. Information and Con-

trol, 56:72-93, 1983.

