
Temporal connectives versus explicit
timestamps in temporal query

languages
�preliminary report�

Serge Abiteboul� Laurent Herr� Jan Van den Bussche�

INRIA Rocquencourty

Paris� France

Abstract

Some temporal query languages work directly on a timestamp repre�
sentation of the temporal database� while others provide a more implicit
access to the �ow of time by means of temporal connectives� We study
the di�erences in expressive power between these two approaches� We
�rst consider �rst�order logic �i�e�� the relational calculus�� We show that
�rst�order future temporal logic is strictly less powerful than the rela�
tional calculus with explicit timestamps� We also consider extensions of
the relational calculus with iteration constructs such as least �xpoints or
while�loops� We again compare augmentations of these languages with
temporal left and right moves on the one hand� and with explicit times�
tamps on the other hand� For example� we show that a version of �xpoint
logic with left and right moves lies between the explicit timestamp ver�
sions of �rst�order and �xpoint logic� respectively�

� Introduction

A simple� natural and common way of representing a temporal relational
database over a �nite time period is to augment each relation with a �times�
tamp� column holding the time instants of validity of each tuple� Such repre�
sentations can then be queried using standard relational query languages with
built�in linear order on the timestamps� An alternative way of providing tem�
poral facilities to query languages is by means of constructs yielding a more
implicit access to the �ow of time� such as the typical temporal connectives
next� previous� until� and since of temporal logic ��	� Illustrations of these two
approaches can be found in �

	� The question of how temporal connectives
versus explicit timestamps in temporal query languages relate to each other
with respect to expressive power� arises naturally ��� �	� In the present paper�
we study this question from various angles�

�On leave from the University of Antwerp� Research Assistant of the Belgian National
Fund for Scienti�c Research�

yINRIA� Domaine de Voluceau� Rocquencourt� B�P� ���� F�����	 Le Chesnay Cedex�
France�

t�while ts�fixpoint

ts�while

ftl

tl

etlts�fo

t�fixpoint

Figure
 The relative power of temporal languages� Solid upward edges indi�
cate strict containment� Dashed lines indicate that the strictness of the con�
tainment depends on unresolved questions in complexity theory�

First� we compare the relational calculus �i�e�� �rst�order logic� with times�
tamps �ts�fo� to past�future �rst�order temporal logic �tl�� We start by show�
ing that future �rst�order temporal logic �ftl� is strictly weaker than tl� This
should be contrasted with the conventional propositional case� where past con�
nectives are known to be redundant ��	� This result should be related to �
	
where it is shown that tl is strictly weaker than ts�fo�

We also look at more powerful languages� in particular� the languageswhile
and fixpoint which augment the relational calculus with while�loops and with
in�ationary �xpoint iteration� respectively ��	� When used on timestamp rep�
resentations of temporal databases� they give rise to powerful temporal query
languages denoted by ts�while and ts�fixpoint� Alternatively� they can be
extended with a more implicit access to the �ow of time� We study their
extension with instructions for moving left and right in time� giving rise to
temporal query languages denoted by t�while and t�fixpoint� In the case
of t�fixpoint� this involves extra non�in�ationary language features which are
interesting in their own right�

We compare ts�while� ts�fixpoint� t�while� and t�fixpoint� We also
compare t�fixpoint with ts�fo� and with etl� an �extended� temporal logic
which is closely related to �xpoint extensions to temporal logic proposed in
the propositional setting �
��
�� �	� Our results are summarized in Figure
�
Note that the only new languages are t�fixpoint and t�while� Note also the
central position of t�fixpoint� We believe this is an important language it
can be evaluated in polynomial time� it accesses time only implicitly� and it
generalizes tl� ts�fo� and etl�

The paper is organized as follows� In Section �� we de�ne temporal

I �

I� I� I�

a
b
c

b
d

a
c

a �
b �
c �
b

d

a �
c �

Figure � A temporal database and its timestamp representation�

databases and timestamp representations� recall tl� and compare it to ts�fo�
In Section �� we recall while� introduce t�while� and compare it to ts�while
and ts�fo� In Section �� we recall the in�ationary language fixpoint� study
its augmentation with certain non�in�ationary features� and introduce the cen�
tral language t�fixpoint� In Section �� we compare t�fixpoint to all other
languages� Finally� in Section �� we indicate special cases of temporal databases
�including some notion of �local time�� where the distinction between explicit
versus implicit access to time in the context ofwhile and fixpoint disappears�
In this preliminary report� the proofs of the technical results are only sketched�

� First�order temporal queries

A temporal database is a non�empty �nite sequence I � I�� � � � � In of instances
of a common relational database scheme� Each element of the sequence is called
a state� We can represent this sequence I as one single instance �I of an extended
scheme� where each relation is extended with an additional column holding for
each tuple the numbers of the states at which the tuple belongs to the relations�
We call �I the timestamp representation of I� More formally� for each relation
R� we have an extended relation �R whose value in �I is

�I� �R� �
n�

t��

It�R�� ftg�

Furthermore� the total order on the timestamps is given in �I in a binary
relation ��

Example � Consider the scheme consisting of a single unary relation S� Tem�
poral databases over this scheme are basically sequences of sets� An example
and its timestamp representation are shown in Figure ��

A very direct way to express temporal queries on I is to use �rst�order logic
�i�e�� relational calculus� on the timestamp representation �I� We denote this
temporal query language by ts�fo�

Example � On databases as in Example
� the query �give the elements that
have been deleted but have later been re�inserted� can be expressed in ts�fo

as

fx j ��t���t����t����t � t� � t� � t�� � S�x� t� ��S�x� t�� � S�x� t����g�

On the database of Figure �� the answer to this query is fa� cg�

Note that queries expressed in ts�fo can also return timestamps� For ex�
ample� the query ft j ��x��S�x� t�� S�x� ���g returns the numbers of all states
that are equal to the �rst state� However� in the remainder of this discussion�
we focus on queries returning data elements only�

An alternative way of expressing temporal queries is by using �rst�order
temporal logic �abbreviated tl�� This language is de�ned on the original
database scheme� and does not involve timestamps� Instead� it extends the
relational calculus by adding the binary connectives since and until� Syntacti�
cally� they are used to build formulas in the same way as the connective � if
� and � are formulas� then so are � since � and � until ��

Semantically�tl formulas� when evaluated on a given temporal database I �
I�� � � � � In� are evaluated with respect to some given time instant t � f�� � � � � ng�
Formally� let � be a tl formula� and let v be a valuation assigning domain
values in I to the variables that are free in �� The satisfaction of � on I at t
under v� denoted I� t j� ��v	� is de�ned as follows

� If � is a relational atom R�x�� � � � � xk�� then I� t j� ��v	 if �v�x��� � � � �
v�xk�� � It�R��

� If � is an equality predicate x � y� or is of one of the forms ��x��� ��x���
��� or � � �� satisfaction is de�ned in the standard way��

� If � is of the form � until �� then I� t j� ��v	 if

�t�� � t I� t�� j� ��v	 � �t� t � t� � t�� � I� t� j� ��v	�

� Finally� if � is of the form � since �� then I� t j� ��v	 if

�t�� � t I� t�� j� ��v	 � �t� t�� � t� � t� I� t� j� ��v	�

In the above� the quanti�ers on t� and t�� naturally range over f�� � � � � ng�
Conventionally� queries expressed in tl are evaluated in the �rst state� So�

if � is a tl formula with free variables x�� � � � � xk� then the result of the query
fx�� � � � � xk j �g on a temporal database I is the relation fv j I� � j� ��v	g�

Example � The query of Example � can be expressed in tl as

fx j sometimesfuture�S�x� � sometimesfuture��S�x� � sometimesfutureS�x���g�

where sometimesfuture � is an abbreviation for � 	 �true until �� �i�e�� �� is true
now or some time in the future��� The other usual temporal connectives next �
��� holds in the next state��� alwaysfuture � ��� holds now and always in the
future��� and the duals for the past �previous� sometimespast and alwayspast�
are also easily de�nable in terms of since and until�

Since tl queries are evaluated in the �rst state� one may wonder if the past
connective since is really necessary� Actually� in propositional tl �corresponding
to the case where the database scheme consists of nullary relations� only�� it
is well�known that every formula is equivalent� with respect to the �rst time
instant� to a pure future formula �i�e�� using only until as temporal connective��
We now show that this does not carry over to the setting of temporal databases

�Quanti�ers range over the active domain�
�A nullary relation can either contain the empty tuple or be empty� and can thus be used

to represent a proposition
i�e�� True or False��

Theorem � The yes�no query Q� ��t � ����x��S�x� t� � S�x� ��� is express�
ible in tl but not in pure future tl�

Proof� �Sketch� We can express Q in tl as

next sometimesfuture��x��S�x�� sometimespast��rst� S�x����

where �rst is the formula ��true since true� �this formula is only true in the
�rst state��

To show that Q is not expressible in pure future tl� we use a combinatorial
argument� Let � be an arbitrary closed pure future tl formula� Let D be some
arbitrary �xed �nite domain of data elements� let d be the cardinality of D� and
let n be some arbitrary �xed positive natural number� We consider temporal
databases I�� � � � � In� and de�ne the function F on the �tails� of such databases
by

F �I�� � � � � In� � fI� j �I�� I�� � � � � In�� � j� �g�

If � would express the query Q� then the cardinality of the image of F would
be

nX
k��

�
�d

k

�
�

However� it can be shown that the cardinality of the image of F is at most
�d

�

� for some integer � depending only on �� The theorem then follows by
elementary asymptotic calculus�

Note that� by symmetry� pure past tl �evaluated in the last state� is also
strictly weaker than tl� Pure past tl is often used to specify dynamic integrity
constraints ��	�

We now turn to the question of how full past�future tl relates to ts�fo�
Clearly� ts�fo is at least as expressive as tl� This inclusion is strict it is
shown in �
	 that the ts�fo�query Q ��t���t����x��S�x� t� � S�x� t��� is not
expressible in tl�

� Iterative queries

Let us �rst brie�y recall how relational calculus is extended with iteration to
obtain the language while� �See ��	 for a more detailed presentation of the
languages while and fixpoint considered in the following sections��

An assignment statement is an expression of the form X � E� where X
is a auxiliary relation and E is a relational calculus query which can involve
both relations from the database scheme and auxiliary relations� Each auxiliary
relation has a �xed arity� in the above assignment statement� the arity of the
result of E must match with the arity of X�

We can now build programs from assignment statements using sequencing
P��P� and while�loops if P is a program� then so is while � do P od� where
� is a relational calculus sentence� The query language thus obtained is called
while� The execution of a program on a database instance is de�ned in the

natural manner� The result of the query expressed by a program is the value
of some designated output relation at completion of the execution��

The language while on the timestamp representations of temporal
databases provides a very powerful temporal query language which is denoted
by ts�while�

Example � The query �give the elements that belong to all even�numbered
states� is not expressible in the relational calculus with timestamps� but it is
expressible in ts�while as follows

Current � f�g�
A � fx j S�x� ��g�
while ��t���t���Current�t� � t� � t� �� do
Current � ft� j ��t��Current�t� � t� � t� ��g�
A � A
 fx j ��t��Current�t� � S�x� t��g
od�

In the above program� A is the answer relation� and t� � t � � is only an
abbreviation which can be directly expressed in terms of the order on the
timestamps�

An alternative temporal query language based on while� not involving
timestamps� can be obtained by extending while with more implicit temporal
features� One way to do this is to execute programs on a machine which can
move back and forth over time� Formally� we provide� in addition to assignment
statements� the two statements left and rightwhich move the machine one step
in the required direction�� Furthermore� we partition the auxiliary relations into
state relations� which are stored in the di�erent states� and shared relations�
which are stored in the memory of the machine itself� So� the values of �and
assignments to� state relations depend on the current state the machine is
looking at� while this is not the case for shared relations� Finally� we assume
two built�in nullary state relations First and Last � with First being true only in
the �rst state� and Last being true only in the last state� The machine always
starts execution from the �rst state�

The temporal query language while extended with left and right moves
just described is denoted by t�while�

Example � The query from Example � can be expressed in t�while as fol�
lows

shared A�
�� Even����

A � fx j S�x�g� Even � f��g�
while �Last do
right�
Even � f��g � Even �
if Even then A � A
 fx j S�x�g
od�

�If the execution loops inde�nitely� the result is de�ned to be empty by default� Such
loops can always be detected �	�

�In the �rst state� left has no e�ect� in the last state� right has no e�ect�

In the above program� A and Even are both shared relations� Note how they
are �declared� as variables in the beginning of the program� indicating their
status of shared relation and their arity� we will always use such declarations
when presenting t�while programs in the sequel� The if�then construct is only
an abbreviation and can be expressed in the relational calculus�

We next study the expressive power of t�while� We will see in the next
section that it strictly encompasses ts�fo� and hence tl as well� We now show

Proposition � t�while is strictly contained in ts�while�

Proof� �Sketch� The simulation of t�while by ts�while is straightforward�
using a Current relation as in Example � holding the current temporal position
of the machine�

The argument for strictness is based on complexity� The complexity of
ts�while programs in terms of the length n of the temporal database only
is precisely pspace� However� the space complexity of t�while programs in
terms of n is linear we only have to store the state relations at each state� The
proposition then follows from the space hierarchy theorem �
�	�

� Fixpoint queries

General while programs can only be guaranteed to run in polynomial space
�pspace� and hence their computational complexity is probably intractable
in general� However� there is a well�known restriction of while which runs in
polynomial time �ptime�� This restriction consists of allowing only in�ationary
assignment statements� of the form X � X � E �abbreviated X �� E��
Executing an in�ationarywhile program with all auxiliary relations initialized
to the empty set will either �nish or repeat a con�guration after an at most
polynomial number of steps�� The computation has then �reached a �xpoint�
and the result of the query is determined� The query language thus obtained
is therefore called fixpoint�

Actually� on ordered databases�� a query is in ptime if and only if it is
expressible in fixpoint� It is an open question whether fixpoint is strictly
weaker than while� but it is shown in ��	 that this question is equivalent to the
renowned open problem in computational complexity on the strict containment
of ptime in pspace�

Similarly to ts�while� the language fixpoint on timestamp representa�
tions of temporal databases provides a powerful yet computationally tractable
temporal query language denoted by ts�fixpoint�

Example 	 The query of Example � can also be expressed in ts�fixpoint as
follows

Current �� f�g�
B �� fx j �S�x� ��g�
while ��t���t���Current�t� � �Current�t�� � t� � t � �� do
Current �� ft� j ��t��Current�t� � t� � t� ��g�

�As for while� in�nite loops can always be detected�
�This means that a linear order on the active domain is available�

B �� fx j ��t��Current�t� � �S�x� t��g
od�

A �� fx j �B�x�g�

Alternatively� we could depart from the language t�while and restrict it
to in�ationary assignments only� to obtain a ptime temporal query language�
However� this language would be rather in�exible� since a pure in�ationary re�
striction is an obstacle to the inherently non�in�ationary back�and�forth move�
ments along time involved in temporal querying� �For simple temporal queries
involving only one single scan� this would su�ce��

This obstacle can also be analyzed using a complexity argument� As we
have seen in Proposition � for t�while� the available space is linear in the
length n of the sequence� In fixpoint� the restriction to ptime is achieved
by a careful in�ationary use of space� Thus� the restriction of t�while to
in�ationary assignments would lead to a computation that would run in time
linear in n�

This problem can be alleviated by adding two extra� non�in�ationary fea�
tures to standard fixpoint that allow to use non�in�ationary variables in a
controled manner �local variables� and �non�in�ationary variables��

�a� Local variables to blocks Certain auxiliary relations can be declared as
local variables to program blocks� These relations can only be assigned
to within the block� and each time the block is exited� they are emptied�
�If the local variables are state relations� they are emptied in each state��
Syntactically� if P is a program then
 local V�� � � � � Vr � P � is a program
block with local auxiliary relations V�� � � � � Vr �

�b� Non�in�ationary variables Certain auxiliary relations can be declared to
be non�in�ationary� They can be assigned to without any in�ationary
restriction� However� they are not taken into account in determining
whether the program has reached a �xpoint� �Hence� this remains in
ptime�� Syntactically� these variables will be declared using the keyword
noninf�

The in�ationary restriction of t�while� to which the above two extra non�
in�ationary features are added� yields a temporal query language that we call
t�fixpoint� Note that con�gurations of t�fixpoint programs now include the
position of the machine in time� which is taken into account to see whether the
computation has reached a �xpoint �i�e�� repeated a con�guration��

It is important to note that the extra features of local and non�in�ationary
variables only make a di�erence in the context of t�fixpoint in the standard
fixpoint language� they can be simulated as shown in the next proposition�
This result is interesting in its own right� since it facilitates expressing ptime

computations in fixpoint� It also indicates a fundamental distinction between
temporal querying and standard querying�

Proposition � Adding program blocks with local variables and nonin�ationary
variables with the restrictions described above to fixpoint does not increase the
expressive power of the language�

Proof� �Sketch� The key observation is that� due to the in�ationary nature
of the computation� a program block can be executed only so many times as

tuples are inserted in the auxiliary relations that are global �i�e�� not local�
to this block� Hence� the contents of the local variables can be simulated by
versioning their tuples with the tuples inserted in the global variables since the
previous invocation of the program block �using Cartesian product�� Emptying
the local variables then simply amounts to creating a new version� The old
versions are accumulated in a separate relation� In this manner the process is
entirely in�ationary� as desired�

We can also simulate the nonin�ationary variables using a similar versioning
technique� The version consists of the tuples inserted in the ordinary� in�ation�
ary variables since the previous non�in�ationary assignment� Since the program
terminates as soon as the in�ationary variables reach a �xpoint� we will not
run out of versions�

We now illustrate the use of local variables and non�in�ationary variables
in t�fixpoint by means of the following two examples� We �rst illustrate local
variables�

Example � Assume the database scheme contains two unary relations S
and T � One way to express the temporal logic query fx j S�x� until T �x�g
in t�fixpoint is as follows

state Mark ����
shared N �
�� A�
��

Mark �� f��g�
while �Last do
right�
A �� �N
 T �
N �� �S
od�

while �Mark do left�

In the above program�Mark is a �nullary� state relation which is used to mark
the initial state� Relations A and N are shared A is the answer relation� and
N keeps track of the elements that are not in S in some state encountered
so far� if x is in N the �rst time it is found to be in T � x does not satisfy
S�x� until T �x�� The �nal while�loop returns to the marked state �the use of
this will become clear immediately��

Suppose now that we have an additional third unary database relation R�
and we want to express the more complex temporal logic query fx j R�x� until
�S�x�until T �x��g� A simply way to do this would be to use the above program
as a subroutine� However� in doing this� care must be taken that the auxiliary
relations Mark � A and N are cleared after each invocation of the subroutine�
This is precisely the facility provided by the local variables in t�fixpoint�
Written out in full� we can thus express the query in t�fixpoint as follows

shared N��
�� A��
��

while �Last do
right�

 local state Mark ����
local shared N �
�� A�
��

Mark �� f��g�
while �Last do
right�
A �� �N
 T �
N �� �S
od�

while �Mark do left�
A� �� �N�
A

��
N� �� �R
od�

We next illustrate the kind of computations that can be performed using
nonin�ationary variables�

Example �� Assume the database scheme consists of a single binary relation
R� Consider the program

noninf shared S����
S � R�
while �Last do
right�
S � fx� y j ��z��S�x� z� �R�z� y��g
od�

At the end� if the last state of the temporal database is numbered n� S contains
the set of pairs �x�� xn� such that there exist x�� x�� � � � � xn with such that
�xi� xi��� is in R in the i�th state� for each i � f�� � � � � n�
g�

� Comparisons

In this section� we �rst show that the expressive power of t�fixpoint lies
between ts�fo and ts�fixpoint� Then we recall the extended temporal logic
etl and show that it can be simulated in t�fixpoint� Finally� we compare
t�fixpoint and t�while�

We �rst show

Theorem �� ts�fo is strictly contained in t�fixpoint�

Proof� �Sketch� Each timestamp variable is represented by a nullary state
relation which is true exactly in the state numbered by the current value of the
variable� plus all states to the left of that state� The simulation now proceeds
by induction on the structure of the formulas� An atomic formula S�x� t� is sim�
ulated by searching for the state where t is true and returning S in that state�
A comparison t � t� between timestamp variables is simulated by a left�to�right
scan checking whether t is true before t�� Disjunction� negation� and existential
quanti�cation of data variables are simulated using union� complementation�
and projection as usual� Finally� existential quanti�cation of a timestamp vari�
able is performed by a while�loop which repeatedly sets the variable true from

left to right� Nested quanti�ers are simulated using a nested program block for
each quanti�er� with the marking relation as a local variable to that block�

The inclusion is strict because ts�fo cannot compute the transitive closure
of a graph stored in one of the states�

Since tl is subsumed by ts�fo� as an immediate corollary we obtain that
tl is strictly contained in t�fixpoint�

We next show

Theorem �� t�fixpoint can be simulated in ts�fixpoint�

Proof� �Sketch� The simulation is analogous to that of t�while by ts�while
of Proposition �� The relation Current used there is non�in�ationary� but by
Proposition � we know that this does not pose a problem�

It is not clear whether the converse of Theorem
� holds� This is again
because of the linear space complexity in the number of states of t�while �and
hence also of t�fixpoint� programs already mentioned in the proof of Propo�
sition �� Indeed� we can reduce the containment of ts�fixpoint in t�fixpoint
to the containment of ptime in the following class of complexity

A problem is in plinspace if it can be solved by a Turing machine
in polynomial time using only linear space�

Observe that if ptime is included in plinspace� then in particular� ptime
is included in linspace which is an open question of complexity theory� We
observe

Theorem �� Assuming ordered databases� ts�fixpoint � t�fixpoint if and
only if ptime � plinspace�

Proof� �Sketch� Suppose that ptime � plinspace� and consider a
ts�fixpoint query Q� Then Q is in ptime� so in plinspace� It is possible �al�
though somewhat intricate� to show that plinspace queries can be computed
in t�fixpoint� The linear tape of the Turing machine is simulated by splitting
it into n pieces �where n is the number of states� and assigning one piece to
each state of the database� Non�in�ationary variables are used to simulate the
non�in�ationary nature of the Turing machine computation� Local variables are
used to �count� the number of steps �polynomial� that the machine is allowed
to perform� Thus Q is in t�fixpoint�

Conversely� suppose that ts�fixpoint � t�fixpoint� Let Q be a ptime

problem� Consider the coding of this problem as a query on a propositional tem�
poral database �each letter in the input word is represented by one state�� As
mentioned in the beginning of Section �� any ptime query on ordered databases
is expressible in fixpoint� Hence� Q can be computed by a ts�fixpoint�
program� So Q can be computed by a t�fixpoint�program� This program
runs in ptime� and since the database is propositional� it uses only linear space�
Thus� Q is in plinspace�

Fixpoint extensions of temporal logic have been studied extensively in the
propositional case ��	� One of these extensions is the extended temporal logic

etl �
��
�	� This language o�ers general temporal connectives expressed in
terms of regular expressions� Indeed� the standard connective � until � of tl
corresponds to searching for the regular expression ab�c� where the letter a
stands for True� b stands for �� and c stands for �� It is not di�cult to de�ne
etl in the context of �rst�order predicate logic �i�e�� databases� rather than
propositional logic �e�g�� ��	�� We can show

Theorem �� etl is strictly contained in t�fixpoint�

Proof� �Sketch� The simulation of etl in t�fixpoint is analogous to the
simulation of tl in t�fixpoint illustrated in Example
�� We now consider
the �nite automaton corresponding to the regular expression� and for each state
of the automaton we use an auxiliary relation playing a role similar to N in
Example
�� keeping track of the status of the elements during the simulation
of the automaton� The state�changes of the automaton are performed while
moving over the states of the temporal database� The state�changing relations
must be implemented using non�in�ationary variables� since the working of the
automaton is not in�ationary�

The inclusion is strict because ts�fo cannot compute the transitive closure
of a graph stored in one of the states� �Actually� also on propositional databases
the inclusion is strict etl can only recognize regular properties ��	� while it
is possible to write a t�fixpoint program checking whether the length of the
temporal database is a prime number��

Finally� we compare t�fixpoint to t�while� It turns out that their equality
is very unlikely

Proposition �� If t�fixpoint � t�while� then ptime � pspace�

Proof� �Sketch� Suppose that t�fixpoint � t�while� Then� in particular�
t�fixpoint equals t�while on temporal databases consisting of a single state�
and hence� fixpoint equalswhile� As mentioned in the beginning of Section ��
this is known to imply ptime � pspace�

It remains open whether the converse of the above proposition holds� In
some sense� the equality of t�fixpoint and t�while could even be more un�
likely that the equality of ptime and pspace�

� Local time

A temporal database I � I�� � � � � In is said to have local time if at each state�
the number of that state is stored in some relation� Formally� assume the
database scheme contains a unary relation Time� Then I has local time if for
each t � f�� � � � � ng� It�Time� � ftg� We naturally assume that the linear order
on timestamps is available to query languages working on temporal databases
with local time�

In practice� local time will often be present� It can be shown that on
temporal databases with local time� t�while is equivalent to ts�while and
t�fixpoint is equivalent to ts�fixpoint�

We will obtain this result as a corollary of the followingmuch stronger result
stating that� in some cases� it is possible to simulate local time using the data

elements� Thereto� we need to assume that the temporal databases are ordered�
i�e�� that a linear order is available on the active domain� �We will remove this
restriction later��

Theorem �� Let p be a natural number� On ordered temporal databases of
length at most dp� where d is the size of the active domain� t�while is equiv�
alent to ts�while and t�fixpoint is equivalent to ts�fixpoint�

Proof� �Sketch� First assume that local time is present� We already know
that ts�while can simulate t�while and that ts�fixpoint can simulate
t�fixpoint� To show the converse simulations� it su�ces to show that the
timestamp representation of a temporal database with local time can be con�
structed in t�fixpoint� since t�fixpoint is a sublanguage of t�while� This
is easily done using the following program �for simplicity assuming that the
database scheme consists of a single relation S�

while �Last do R �� S � Time� right od

It now su�ces to observe that local time can be simulated using the tuples
in Dp� This is done by a straightforward t�fixpoint program which gener�
ates them one after the other in lexicographical order while moving over the
temporal database from left to right�

Note that in order to prove Theorem
� we do not even need the facilities
of local and nonin�ationary variables in t�fixpoint�

In the above� we assumed that the domain of the database is ordered� Using
a similar argument� the theorem remains true without the ordering assumption
if we replace dp by ip� where i the k�type index of the database for some k�
For the formal de�nition of type index we refer to ��	� we simply recall that it
is a polynomial in d on ordered databases� and that the k�type index	 can be
computed in fixpoint� Now for temporal databases� one can show that it can
be computed in t�fixpoint� and it is easy to demonstrate that for databases
with local time� the k�type index is always larger than the number of states�
From these observations� it follows

Corollary �	 On temporal databases with local time� t�while is equivalent to
ts�while and t�fixpoint is equivalent to ts�fixpoint�

References

�
	 S� Abiteboul� L� Herr� and J� Van den Bussche� Temporal connectives
versus explicit timestamps in temporal query languages� Technical report�
INRIA�
���� in preparation�

��	 S� Abiteboul� R� Hull� and V� Vianu� Foundations of Databases� Addison�
Wesley�
����

��	 S� Abiteboul and E� Simon� Fundamental properties of deterministic and
nondeterministic extensions of Datalog� Theoretical Computer Science�
��
���
���
��
�

�Actually� the collection of k�types with an order on them�

��	 S� Abiteboul and V� Vianu� Generic computation and its complexity� In
Proceedings ��rd ACM Symposium on Theory of Computing� pages ����
�
��
��
�

��	 A� Casanova and A� Furtado� On the description of database transition
constraints using temporal constraints� In H� Gallaire� J� Minker� and J��M�
Nicolas� editors� Advances in Data Base Theory� pages �

����� Plenum
Press�
����

��	 J� Chomicki� History�less checking of temporal integrity constraints� In
Proceedings �th International Conference on Data Engineering� IEEE�

����

��	 J� Chomicki� Temporal query languages a survey� In D�M� Gabbay and
H�J� Ohlbach� editors� Temporal Logic� ICTL	
�� volume ��� of Lecture
Notes in Computer Science� pages �������� Springer�Verlag�
����

��	 J� Cli�ord� A� Croker� and A� Tuzhilin� On completeness of historical rela�
tional query languages� ACM Transactions on Database Systems�
��
����

��
����

��	 E�A� Emerson� Temporal and modal logic� In J� van Leeuwen� editor�
Handbook of Theoretical Computer Science� volume B� chapter
�� Elsevier
science publishers�
����

�
�	 J�E� Hopcroft and J�D� Ullman� Introduction to Automata Theory� Lan�
guages� and Computation� Addison�Wesley�
����

�

	 A� Tansel et al�� editors� Temporal Databases� Theory� Design� and Im�
plementation� Benjamin�Cummings�
����

�
�	 M�Y� Vardi� A temporal �xpoint calculus� In Proceedings �th ACM Sym�
posium on Principles of Programming Languages� pages ��������
����

�
�	 P� Wolper� Temporal logic can be more expressive� Information and Con�
trol� ��������
����

