
Temporal versus First�Order Logic
to Query Temporal Databases

Serge Abiteboul� Laurent Herry Jan Van den Busschez

Abstract

A database history can be modeled as a ��nite� sequence
of instances discretely ordered by time� Similarly� the
behavior of a system such as an operating system or a
reactive system can be modeled by an in�nite such se�
quence� One can view the sequence as one single data�
base where each relation has an additional column hold�
ing the time instant of validity of each tuple� The tem�
poral database can then be queried using standard re�
lational calculus ��rst�order logic� on this �timestamp�
representation� One may alternatively use an implicit
access to time and express queries in temporal logic� It
is known that these two approaches yield the same ex�
pressive power in the propositional case� Their compar�
ison in the predicate�database context remained open�
We prove here that there are �rst�order logic queries on
the timestamp representation that are not expressible
in �extended� temporal logic� The proof technique is
novel and is based on communication complexity�

� Introduction

A database history can be modeled as a ��nite�
sequence of instances discretely ordered by time�

� Department of Computer Science� Stanford Uni�
versity� Stanford� CA ����������� USA� E�mail� abite�
bou	db�stanford�edu� On leave from INRIA�Rocquencourt�
France�

yINRIA 
Projet VERSO�� Domaine de Voluceau� Roc�
quencourt� B�P� ���� F�
���� Le Chesnay Cedex� France�
E�mail� laurent�herr	inria�fr�

z Informatica� University of Antwerp 
UIA�� Univer�
siteitsplein �� B����� Antwerpen� Belgium� E�mail� vd�
buss	uia�ua�ac�be� Work performed while on leave at
INRIA�Rocquencourt� Post�doctoral research fellow of the
Belgian National Fund for Scienti�c Research�

Similarly� the behavior of a system such as an oper�
ating system or a reactive system can be modeled
by an in�nite such sequence� We are concerned
here with querying sequences of database instances�
also called �discrete�time� temporal databases� As
discussed in Chomicki�s excellent survey on the fun�
damental aspects of temporal query languages ��	�
there are two di
erent approaches to query a tem�
poral database using a �rst�order language�

�� One can view the sequence as one single
relational database of an augmented schema
where a 
timestamp� column is added to
each relation� The new column holds the
time instants of validity of each tuple� This
timestamp representation can then be queried
using relational calculus with variables ranging
either over data elements or over timestamps�
The linear order on timestamps is given as a
built�in relation� We denote relational calculus
with explicit access to time by ts�fo �for
timestamp��rst�order logic��

�� Alternatively� one can use temporal logic ��	
which provides a more 
implicit� access to
time� Standard temporal logic is an extension
of classical logic with the temporal operators
since� until� next� and previous� Observing that
these operators can be viewed as searching for
regular events� one can be more general and
supply a temporal operator for each regular
language ���	� We denote standard temporal
logic by tl� and extended temporal logic �with
general regular events� by etl�

It is natural to compare these potential query
languages� For propositional temporal databases
�corresponding to the case where the schema



consists of relations of arity zero� i�e�� Boolean �ags�
only�� this issue is well understood� Since the
temporal operators of tl can easily be expressed
in ts�fo� tl is trivially contained in ts�fo� A
classical result ����	� see also ��	� states that
the converse containment holds as well� tl and
ts�fo are equivalent for propositional temporal
databases� This is often referred to as the

expressive completeness� of propositional tl� It
is also known that etl is strictly stronger than
these two languages in the propositional case� in
etl� one can express that a certain property is
periodically true which is impossible in ts�fo�

How the languages compare in the general case
remained open� In this paper� we show that some
ts�fo queries are not expressible in etl� Thus� tl
is not expressively complete� and ts�fo and etl

are incomparable� We prove these results both for
�nite temporal databases and for in�nite ones�

Evidences for this result already existed since
���� ��	� Indeed� Kamp obtained results implying
that tl is strictly weaker than ts�fo on the class of
densely ordered temporal structures� an essentially
di
erent context� Moreover� Toman and Niwinski
���	 �still in the densely ordered case� showed
that no �nite set of �rst�order temporal operators
can be added to tl so as to achieve expressive
completeness�

Also� in a previous paper� we established another
failure in the discrete �rst�order case of a classical
propositional result� Propositional tl with next

and until only can simulate full propositional tl�
We showed in ��	 that this is not true in the
predicate case� What was not pointed out there is
that this failure implies� in turn� the failure in the
discrete �rst�order case of the separation property

��	� a most fundamental property of propositional
tl known to be intimately related to its expressive
completeness�

An example of a query separating etl and ts�fo

is �are there two distinct time instants at which

the sta� consists of exactly the same employees��

�on a temporal database recording the evolution
of a company�s sta
�� We prove our result by
developing a �ne analysis of tl computations on
a class of temporal databases called 
split� and
using a proof technique based on communication

complexity ���� ��	� To our knowledge� this is
the �rst time this tool is employed to analyze the

expressive power of query languages�

The paper is organized as follows� In Section ��
we provide the necessary background� In Section ��
we exhibit queries on �nite temporal databases
that are expressible in ts�fo but not in etl� In
Section � we show that the techniques also apply to
the in�nite case� Finally� in Section �� we mention
conditions on the database that bring tl up to
the power of ts�fo� We also discuss alternative
approaches that may provide di
erent proofs of our
result�

� Preliminaries

We assume some familiarity with relational data�
bases �see� e�g�� ��	�� A database schema is a �nite
set of relation names� where each relation name
has an associated arity� An instance of a schema
assigns to each relation name a �nite relation of ap�
propriate arity over a �xed countably in�nite do�
main of data elements� The active domain of an
instance is the set of all data elements appearing
in some of its relations�

A temporal database over a database schema S is
a non�empty �nite sequence I � I�� � � � � In �n � ��
of instances of S� Every j � f�� � � � � ng is called
a state of I� The active domain of a temporal
database is the union of the active domains of its
instances�

The timestamp representation and the lan�

guage ts�fo� We can identify a temporal data�
base I with a two�sorted relational structure called
the timestamp representation of I� Data elements

are taken from the active domain of I� whereas
timestamps are from the set of states f�� � � � � ng��

The timestamp representation also contains the lin�
ear order on the states as an explicit binary relation
�� Furthermore� it contains� for each relation R of
arity k in the database schema� an extended rela�
tion �R of arity k � �� The �rst k columns of this
relation hold data elements� the last column holds
timestamps� The contents of this relation� denoted

�For clarity� we assume without loss of generality that
the domain of data elements is disjoint from the natural
numbers� However� it is sometimes possible 
and interesting�
to simulate timestamps using data elements� we come back
to this issue in Section ��



I �

I��R� I��R� I��R�

a

b

c

b

d

a

c

I� �R�

a �
b �
c �
b �
d �
a �
c �

Figure �� A temporal database and its timestamp
representation�

I� �R�� is
n�

j��

�Ij�R�� fjg��

Example ��� A temporal database over a schema
consisting of a single unary relation S� together
with its timestamp representation are shown in
Figure ��

Using �two�sorted� �rst�order logic on the times�
tamp representation of a temporal database� we
obtain a query language that is denoted by ts�fo�
�The data�variables range over data elements and
time�variables over states�� The sorts of ts�fo

variables will be clear from the context�

Example ��� If S is a unary relation holding
employees of some company� the following ts�fo

formula expresses that x is an employee who has
been hired� later �red� and still later re�hired�

��t����t����t���t� � t� � t� �

�S�x� t�� � � �S�x� t�� � �S�x� t����

Extended temporal logic� An alternative way
of providing a temporal query language is to extend
�rst�order logic with temporal operators rather
than explicit time�variables� We will use temporal
operators based on regular events� leading to
extended temporal logic� denoted by etl ���	� The
syntax of etl over some database schema S is
obtained by using the formation rules for standard
�rst�order logic over S together with one additional
formation rule�

Let L be a regular language over the �nite
alphabet �v�� � � � � vp�� and let ��� � � � � �p be
formulas� Then

L����� � � � � �p� and L����� � � � � �p�

are also formulas�

The order of the letters in the alphabet �v�� � � � � vp�
is relevant since it allows to relate these letters to
the arguments ���� � � � � �p��

The semantics of etl is as follows� Let I �
I�� � � � � In be a temporal database over S� Let
���x� be an etl formula with free variables �x �
x�� � � � � xk� let �a � a�� � � � � ak be data elements in
the active domain of I� and let j � f�� � � � � ng be a
state� The truth of ���a	 in I at time j� denoted by
I� j j� ���a	� is de�ned as follows�

�� If � is an atomic formula� a conjunction� a
negation� or a quanti�cation� the de�nition is
as usual� Quanti�cation is always on the active
domain�

�� If � is of the form L����� � � � � �p�� with L a
regular language over the alphabet �v�� � � � � vp��
then I� j j� ���a	 if there exists a word w �
vwj

� � �vwn of length �n� j � �� in L such that

I� j j� �wj
��a	 and � � � and I� n j� �wn ��a	�

�� Symmetrically� if � is L����� � � � � �p�� then
I� j j� ���a	 if there exists a word w � vwj

� � � vw�

of length j in L such that

I� j j� �wj
��a	 and � � � and I� � j� �w�

��a	�

Example ��� The formula L�
�
�true� ��� where L�

is the language a�ba� over the alphabet �a� b�� is
true at time j i
 there is some time in the future
of j �including j itself� where � is true� Similarly�
L�
�
�true� �� expresses that � holds sometime in the

past�
Now recall Example ���� The following etl

formula is true of x at some time i
 x is not a
sta
 member now� has been one in the past� and
will again be one in the future�

�S�x�� L�
� �S�x��� L

�
� �S�x���

For another example� a formula which is true
only in the last �or �rst� state is L�� �true� �or
L�
�
�true��� where L� is the singleton language fag�



Finally� the formula L�� �true�� where L� is the
language �aa��� is true in the �rst state i
 the
length of the temporal database is even�

Example ��� The previous example showed how
the familiar temporal operators 
sometimes in the
future� and 
sometimes in the past� of standard
temporal logic ��	 can be expressed in etl� We next
show how the other temporal operators of standard
temporal logic can be expressed�

The temporal connectives since and until can be
expressed in etl as follows�

� since � � L�
�
��� �� �� true�

and

� until � � L�� ��� �� �� true��

where L� is the language a�bc� over the alphabet
�a� b� c�� The connectives next and previous are
expressed as

next� � L�� �true� ��

and

previous� � L�
�
�true� ���

where L� is the language aba� over the alphabet
�a� b��

Temporal logic� i�e�� the fragment of etl having
as only temporal operators since� until� next� and
previous� is denoted by tl�

The above examples also illustrate a subtle
feature of our de�nition� When searching for
a regular event in the future �using the L�

connective�� we require that a word in L can be
found which reaches precisely the last state of the
temporal database� Similarly� when searching in
the past� a word must be found which reaches
precisely the �rst state� We refer to this as full

search� as opposed to partial search which does not
require the match to reach the beginning or end�
As illustrated in some of the above examples� it is
easy to simulate partial search using full search�
it su�ces to continue testing for true after the
desired match has been found� Conversely� it can
be shown �proof omitted� that full search can be
simulated using partial search�

Boolean queries� A Boolean query on a class
of temporal databases over some �xed schema is a
mapping assigning true or false to each database in
the class� Every ts�fo sentence �formula without
free variables� de�nes a Boolean query in the
obvious way� Also every etl sentence � de�nes
a Boolean query Q in a natural way�

For temporal database I� Q�I� � true i
 � is
true on I at every state�

An alternative would be to require � to be true
only at the �rst state� but this leads to the same
class of queries�
tl is obviously expressible in ts�fo� For

example� to express that � until � holds at t� one
states that there exists t� � t such that � holds
at t� and � holds at each t�� between t and t�� As
shown in Example ���� the query 
the length of the
temporal database is even� is expressible in etl�
It is not expressible ts�fo� since parity of a linear
order is well�known not to be �rst�order de�nable�
In the next section� we will show that conversely�
there are queries expressible in ts�fo but not in
etl� Since tl is a sublanguage of etl� we will thus
establish that tl is strictly less expressive than
ts�fo�

� ts�fo queries inexpressible in etl

In this section� we �rst introduce a variant of the
communication protocols of ���	 �see also ���	�� and
introduce the notion of 
constant communication
complexity� of binary predicates on sets of sets �of
data elements�� We also introduce the class of split
temporal databases� Each binary predicate on sets
of sets gives rise to a query on split databases�
We then prove that if the communication complex�
ity of a predicate is not constant� then the corre�
sponding query is not expressible in etl� However�
natural predicates of non�constant communication
complexity exist whose corresponding queries are

expressible in ts�fo�

��� Communication protocols

Let P be a binary predicate on sets of sets of data
elements� We say that P has constant communica�

tion complexity if there exist �xed natural numbers
k and r and a communication protocol between two
parties �denoted by A and B� that� for each �nite
set D of data elements� can evaluate P �X� Y � on



any sets X and Y of non�empty subsets of D as
follows�

�� A gets X and B gets Y � Both parties also know
D�

�� A sends a message a� � a��D�X� to B� and B
replies with a message b� � b��D� Y� a�� to A�
Each message is a k�ary relation on D�

�� A again sends a message a� � a��D�X� b�� to
B� and B again replies with a message b� �
b��D� Y� a�� a���

�� After r such message exchanges� both A and B
have enough information to evaluate P �X� Y �
correctly� Formally� they apply a Boolean
function

ar���D�X� b�� � � � � br� �for A�

or
br���D� Y� a�� � � � � ar� �for B�

that evaluates to true i
 P �X� Y � is true�

So� formally� a protocol consists of the functions
a�� � � � � ar� ar�� and b�� � � � � br� br��� Note that the
computing power of A and B is unlimited� the
functions de�ning the protocol can be completely
arbitrary�

Example ��� As a simple example� let P �X� Y �
be true if the maximal cardinality of an element
in X is larger than the maximal cardinality of an
element in Y � Then P has constant communication
complexity with k � � and r � �� Indeed� A sends
to B an element ofX with maximal cardinality� and
B replies with an analogous element for Y � Both
A and B can then evaluate P �X� Y � on their own�
by a simple comparison of cardinalities�

We have a �rst lemma�

Lemma ��� The equality� inclusion and disjoint�

ness predicates do not have constant communica�

tion complexity�

Proof� �Sketch� Suppose there is a communication
protocol for the equality predicate with r exchanges
of messages of arity k� Call any such sequence
a�b� � � �arbr of messages a dialogue� Since k is �xed�
for large enoughD there are less dialogues than sets

of non�empty subsets of D� Hence� there are two
di
erent such sets X and Y such that the protocol
yields the same dialogue when evaluating P �X�X�
and P �Y� Y �� But then this same dialogue will also
be used for evaluating P �X� Y �� a contradiction�

It follows that the inclusion and disjointness
predicates are not of constant communication com�
plexity either� Indeed� communication protocols
for these predicates can be easily transformed into
a communication protocol for equality� It su�ces
to observe that X � Y i
 X is included in Y and
vice versa� and that X � Y i
 X and Y c are dis�
joint�

Our notion of communication protocols is a 
set�
based� variant of the original bit�based one� where
the predicate to be evaluated is a predicate on bit�
strings� and the exchanged messages are individual
bits� Yao ���	 showed in this setting that the
equality predicate on strings of length n requires
a number of bit exchanges that is linear in n�
Lemma ��� can also be proven from this fact�

��� Split databases

We now �x the database schema to consist of one
single unary relation S� A temporal database is
then a sequence of �nite sets of data elements� A
temporal database is called split if there is exactly
one state whose instance is empty� This state is
called the middle state of the split database� If
I � I�� � � � � In is a split database with middle state
m then its right part Im� � � � � In is denoted by Iright
and its left part I�� � � � � Im by Ileft � Observe that
one can test in tl whether a temporal database is
split�

We next de�ne an auxiliary language split�etl

whose semantics is only de�ned on split databases�
Syntactically� split�etl di
ers from etl only in
that each temporal operator L� �L�� is split into
a 
left� and a 
right� version L�left and L�right �L

�
left

and L�
right ��

Informally� the left �right� version of a temporal
operator behaves roughly the same as the operator
itself� except that only the left �right� part of
the split database is taken into consideration�
Formally� let I be a split database of length n with
middle state m� For each state j of I we de�ne

left�j� ��

�
j if j 	 m

m if j � m



and

right�j� ��

�
� if j 	 m

j �m� � if j � m

So� left�j� �right�j�� is the state in the left �right�
part of I corresponding to j� if j is indeed contained
in that part� if not� the default values m and ��
respectively� are used�

The semantics of the split temporal operators is
then de�ned as follows� For � being either � or ��
I� j j� L�

left if Ileft � left�j� j� L�� and I� j j� L�
right if

Iright � right�j� j� L��

We now have our second lemma�

Lemma ��� On split databases� each etl formula

is equivalent to a split�etl formula�

Proof� �Sketch� Consider a temporal operator L�

of etl� with L a regular language over the alphabet
�v�� � � � � vp�� Then L is de�ned by some �nite
automaton M � Let the states of M be numbered
�� � � � � q� with � the initial state� and let F be
the set of �nal states� For z � f�� � � � � qg and
Z � f�� � � � � qg� letMzZ be the automaton obtained
from M by changing the initial state to z and the
set of �nal states to Z� and denote by LzZ the
language de�ned by MzZ � Let v� a symbol not in
the alphabet fv�� � � � � vpg� Then the etl formula
L����� � � � � �p� can be expressed in split�etl as

��at right 
 at middle� � L�right ���� � � � � �p��


�at left �
q�

z��

��L�fzg�
�

left���� � � � � �p��

�v�LzF �
�

right�true� ��� � � � � �p����

In the above� the language v�LzF is interpreted
over the alphabet �v�� v�� � � � � vp�� and we have used
the abbreviations

at middle � ���x�S�x��
at left � K�

left�true� at middle��

at right � K�
right�true� at middle��

where K is the language a�b over the alphabet
�a� b��

The case L� is treated similarly�

��� Inexpressibility

Let P be a binary predicate on sets of sets� as
in Subsection ���� Consider the Boolean query
QP on split databases de�ned as follows� For a
split database I � I�� � � � � In with middle state m�
QP �I� � true if P �L�R� holds� where L � fIj j � 	
j � mg and R � fIj j m � j 	 ng�

Our third lemma connects temporal queries to
communication protocols�

Lemma ��� If QP is expressible in etl� then P

has constant communication complexity�

Proof� �Sketch� Assume QP is expressible in etl�
By Lemma ���� QP is expressible by a split�etl
formula �� Consider all subformulas of � of the form
L�
��� � ��� where � is � or � and � is left or right �

and let 	�� � � � � 	r be a listing of these such that
each subformula occurs after its own subformulas�
Let k be the maximal number of free variables of
any of these subformulas� We show that � yields a
communication protocol for P with r exchanges of
messages of arity k�

Let X and Y be two sets of non�empty subsets
of a �nite set D of data elements� and consider any
split temporal database I with middle statem� such
that X � fIj j � 	 j � mg and Y � fIj j m �

j 	 ng� In order to evaluate P �X� Y �� it su�ces
to evaluate QP �I�� for which in turn it su�ces to
evaluate � at some state of I� To do the latter� the
parties evaluate� in succession� each subformula 	i
on every k�tuple of active domain elements� at the
middle state� If the temporal operator of 	i is a
left �right� version� then A �B� knows how to do
this and he sends the resulting k�ary relation to B
�A�� �Note in this respect that both parties can be
assumed� without loss of generality� to know the
active domain of I� if not� they can send the set of
elements of D appearing in their set of sets to each
other in a single exchange of messages�� When the
values of all the 	i are known to both parties� they
have enough information to evaluate ��

Putting everything together� we obtain our main
result�

Theorem ��� Over schemas containing at least

one relation of non�zero arity� there are queries

expressible in ts�fo but not in etl� In particular�

query Q �are there two di�erent states with the



same instance�� is expressible in ts�fo but not

in etl�

Proof� �Sketch� For simplicity we assume the
schema consists of a single unary relation S� Query
Q is obviously expressible in ts�fo�

��t���t���t �� t� � ��x�� �S�x� t�
 �S�x� t�����

On the class of split databases whose left and right
parts do not contain repetitions� Q corresponds to
QP � where P is the non�disjointness predicate� By
Lemma ���� the complement of P �so also P itself�
does not have constant communication complexity�
Hence� by Lemma ���� Q is not expressible in etl�

Corollary ��� Over schemas containing at least

one relation of non�zero arity� tl is strictly less

expressive than ts�fo�

Note that our result remains valid under the
assumption that the data elements are totally
ordered� Indeed� the proof of Lemma ��� holds
regardless of any knowledge �e�g�� total order� the
parties may have of the set D�

� In�nite temporal databases

In this section� we extend our result to the
case of in�nite �but still discrete�time� temporal
databases�

An in�nite temporal database over a schema S
is an in�nite sequence I � I�� I�� � � � of instances of
S� So� the set of states is the set of non�negative
natural numbers� and the active domain may be
in�nite �although every individual instance is� by
de�nition� still �nite�� In the present discussion�
we focus on expressiveness� and not on the issue
of �nitely representing an in�nite temporal data�
base� or e
ectively computing answers to queries�
References on these issues can be found in ��	�

The query languages ts�fo and etl can also be
used on in�nite temporal databases� For ts�fo�
this is clear� For etl� one uses 
�languages rather
than ordinary languages in de�ning the semantics
of the future temporal operators� since the future
of every state is now in�nite� The past of every
state is� on the contrary� still �nite� �All our
results extend easily to the case of two�way in�nite
temporal databases�� Recall ��	 that an 
�language

is a set of in�nite� rather than �nite� words� and
that a regular 
�language can still be de�ned by a
�nite automaton� an in�nite word is accepted by
the automaton if while reading the word it enters
an accepting state in�nitely often�

We now argue that our techniques of the previous
section extend to the in�nite case� An in�nite
temporal database is again called split if there
is exactly one state whose instance is empty�
The right part of an in�nite split database is
itself in�nite� the left part is �nite� Syntax and
semantics of split�etl on in�nite split databases
are de�ned in terms of etl exactly as before� The
result that split�etl can simulate etl on split
databases goes through in the in�nite case� the only
modi�cation to the proof of Lemma ��� is that in
the large expression for L�� LzF now becomes an

�language� Finally� the proof of Lemma ��� carries
over verbatim� with the condition that instead of a
�nite I � I�� � � � � In we use an in�nite I � I�� I�� � � ��
and instead of fIj j m � j 	 ng we use fIj j

m � jg� Note that this implies that party B of the
protocol deals with an in�nite object� but this is of
no concern since his computing power is unlimited�
We thus have�

Theorem ��� On in�nite temporal databases over

a scheme containing at least one relation of non�

zero arity� there are queries expressible in ts�fo

but not in etl� As a consequence� tl is strictly

weaker than ts�fo on in�nite temporal databases�

� Discussion

To conclude� we mention some cases in which ts�fo

is not more powerful than tl� We also discuss
alternative approaches that may provide di
erent
proofs of our result�

Local time� For clarity� we have separated the
data elements in a temporal database from the
natural numbers used to number its states� If�
however� one allows these natural numbers to be
stored in the database instances� an interesting
special case can be indicated in which tl is
expressively complete� i�e�� equivalent to ts�fo�

More speci�cally� assume the database schema
contains a unary relation Time� and assume the
contents of that relation at the i�th state is the
singleton fig� Temporal databases of this kind are



said to have local time� The local time assumption
is quite realistic in practice� and has been made�
e�g�� by Gabby and McBrien ��	� It also seems to
be implicitly made by Tuzhilin and Cli
ord ���	�
We note�

Proposition ��� On local�time databases� tl is

equivalent to ts�fo�

Proof� �Sketch� The proposition holds because on
the class of local�time temporal databases� both the
timestamp representation of the database as the
linear order on the timestamps are de�nable in tl�
Indeed� for a relation R� the timestamped relation
�R consists simply of all tuples �u� i�� where u is in R
at some state and i is the contents of Time at that
state� This is readily expressible in tl� The linear
order t � t� on timestamps then corresponds to
saying that t is the contents of Time at some state
and t� is the contents of Time at a later state� Also
this is readily expressed in tl�

The above proposition provides an a posteriori
justi�cation of the� at �rst sight erroneous� expres�
sive completeness claims on tl made in ��� ��	�

Actually� by essentially the same argument� a
more general result can be proven� Let ���x� be
an arbitrary �xed tl�formula� For each state j of
a temporal database I� � de�nes a relation ��Ij� on
the j�th instance Ij � If ��Ij� and ��I�� are disjoint
for any two di
erent states j and �� I is called ��

disjoint� Observing that ��Ij� can then be used as
a simulation of the timestamp j� it can be shown
that�

Proposition ��� On the class of ��disjoint data�

bases� tl is equivalent to ts�fo�

For example� local�time databases are ��disjoint
with � simply being Time�x�� Another case in
point are insert�only databases where for each j�
the instance at state j � � is obtained from the
instance at state j by inserting a non�zero number
of tuples in some of the relations� Insert�only
databases are ��disjoint with � being

W
�R��x� �

� previousR��x�� �where the disjunction is over all
relations R in the schema��

In temporal logics with iteration capabilities�
even more powerful simulations of timestamps by
tuples of data elements are possible ��	�

Other possible approaches� An alternative
approach to establish our Corollary ��� would be
to prove that ts�fo�� the � time�variable fragment
of ts�fo� is strictly less expressive than full ts�fo�
Indeed� it is known and not di�cult to verify that
every tl query is already expressible by a formula
in ts�fo using at most � distinct time�variables�
Note that our proof of Theorem ��� implies that
tl is strictly contained in ts�fo

�� actually� the
proof shows that even some ts�fo� queries are not
expressible in tl�

More generally� one might conjecture that there
is a strict hierarchy in expressive power among the
fragments ts�fo

k for each k� �It is known that
ts�fo

� ��� ts�fo
� � �� ts�fo

��� A closely related
question is whether there is a strict fok�hierarchy
on the class of ordered �nite graphs� Here� fo

k

denotes the k variable fragment of standard �rst�
order logic on ordered graphs�

On might also try to separate tl and ts�fo with
a proof based on Ehrenfeucht�Fra��ss�e style games�
Segou�n ���	 designed a very elegant extension
of Ehrenfeucht�Fra��ss�e games capturing precisely
the expressive power of tl� In our experience�
however� it is quite hard to explicitly construct
families of pairs of temporal databases that are
indistinguishable in tl� Our approach based on
communication complexity turned out to be more
successful� Our proof is robust under built�in
relations on data elements� such as total order� and
at the same time separates the more powerful etl
from ts�fo�

Acknowledgments

We thank Luc Segou�n for pointing out the relation
to communication complexity� and Victor Vianu for
raising the ts�fo

k issue� We thank them both for
helpful discussions and encouragements�

References

��	 S� Abiteboul� R� Hull and V� Vianu� Founda�
tions of Databases� Addison�Wesley� Reading�
Massachusetts� �����

��	 S� Abiteboul� L� Herr� and J� Van den Bussche�
Temporal connectives versus explicit times�
tamps in temporal query languages� In J� Clif�
ford and A� Tuzhilin� editors� Recent Advances



in Temporal Databases� Workshops in Com�
puting� pages �� ��� Springer�Verlag� �����

��	 J� Chomicki� Temporal query languages� a
survey� In D�M� Gabbay and H�J� Ohlbach�
editors� Temporal Logic� ICTL	
�� volume ���
of Lecture Notes in Computer Science� pages
��� ���� Springer�Verlag� �����

��	 E�A� Emerson� Temporal and modal logic�
In J� van Leeuwen� editor� Handbook of Theo�
retical Computer Science� volume B� Elsevier�
�����

��	 D� Gabbay� The declarative past and the
imperative future� Executable temporal logic
for interactive systems� In B� Banieqbal�
B� Barringer� and A� Pnueli� editors� Temporal

Logic in Speci�cation� volume ��� of Lecture
Notes in Computer Science� pages ��� ����
Springer�Verlag� �����

��	 D� Gabbay and P� McBrien� Temporal logic
and historical databases� In Proceedings

�
th International Conference on Very Large

Databases� pages ��� ���� �����

��	 D�M� Gabbay� I� Hodkinson� and M� Reynolds�
Temporal Logic� Mathematical Foundations

and Computational Aspects� volume � of Ox�
ford Logic Guides�

��	 D� Perrin� Finite automata� In J� van Leeuwen�
editor� Handbook of Theoretical Computer

Science� volume B� Elsevier� ����� Oxford
University Press� �����

��	 H� Kamp� Formal properties of !now�� Theoria�
������ ���� �����

���	 J�A�W� Kamp� Tense Logic and the Theory

of Linear Order� PhD thesis� University of
California� Los Angeles� �����

���	 C�H� Papadimitriou� Computational Complex�

ity� Addison�Wesley� �����

���	 L� Segou�n� Temporal logic and games�
INRIA� VERSO� �����

���	 D� Toman and D� Niwinski� First�order queries
over temporal databases inexpressible in tem�
poral logic� Dept� of Comp� and Info� Sci�

ence� Kansas State University� ����� To ap�
pear in Proceedings �th International Confer�
ence on Extending Database Technology� Avi�
gnon� France� March �����

���	 A� Tuzhilin and J� Cli
ord� A temporal re�
lational algebra as a basis for temporal rela�
tional completeness� In D� McLeod� R� Sacks�
Davis� and H� Schek� editors� Proceedings of

the ��th International Conference on Very

Large Data Bases� pages �� ��� Morgan Kauf�
mann� �����

���	 P� Wolper� Temporal logic can be more
expressive� Information and Control� ����� 
��� �����

���	 A� C��C� Yao� Some complexity questions re�
lated to distributive computing� In Proceed�

ings ��th ACM Symposium on the Theory of

Computing� pages ��� ���� �����


