Temporal versus First-Order Logic

to Query Temporal Databases

Serge Abiteboul*

Abstract

A database history can be modeled as a (finite) sequence
of instances discretely ordered by time. Similarly, the
behavior of a system such as an operating system or a
reactive system can be modeled by an infinite such se-
quence. One can view the sequence as one single data-
base where each relation has an additional column hold-
ing the time instant of validity of each tuple. The tem-
poral database can then be queried using standard re-
lational calculus (first-order logic) on this “timestamp”
representation. One may alternatively use an implicit
access to time and express queries in temporal logic. It
i1s known that these two approaches yield the same ex-
pressive power in the propositional case. Their compar-
ison in the predicate/database context remained open.
We prove here that there are first-order logic queries on
the timestamp representation that are not expressible
in (extended) temporal logic. The proof technique is
novel and is based on communication complexity.

1 Introduction

A database history can be modeled as a (finite)
sequence of instances discretely ordered by time.

* Department of Computer Science, Stanford Uni-
versity, Stanford, CA 94305-9045, USA. E-mail: abite-
bou@db.stanford.edu. On leave from INRIA-Rocquencourt,
France.

'INRIA (Projet VERSO), Domaine de Voluceau, Roc-
quencourt, B.P. 105, F-78153 Le Chesnay Cedex, France.
E-mail: laurent.herr@inria.fr.

! Informatica, University of Antwerp (UIA), Univer-
siteitsplein 1, B-2610 Antwerpen, Belgium. FE-mail: vd-
buss@uia.ua.ac.be. Work performed while on leave at
INRIA-Rocquencourt. Post-doctoral research fellow of the
Belgian National Fund for Scientific Research.

Laurent Herr!

Jan Van den Bussche?

Similarly, the behavior of a system such as an oper-
ating system or a reactive system can be modeled
by an infinite such sequence. We are concerned
here with querying sequences of database instances,
also called (discrete-time) temporal databases. As
discussed in Chomicki’s excellent survey on the fun-
damental aspects of temporal query languages [3],
there are two different approaches to query a tem-
poral database using a first-order language:

1. One can view the sequence as one single
relational database of an augmented schema
where a “timestamp” column is added to
each relation. The new column holds the

time instants of validity of each tuple. This

timestamp representation can then be queried
using relational calculus with variables ranging
either over data elements or over timestamps.

The linear order on timestamps is given as a

built-in relation. We denote relational calculus

with explicit access to time by Ts-ro (for

timestamp-first-order logic).

2. Alternatively, one can use temporal logic [4]
which provides a more “implicit” access to
time. Standard temporal logic is an extension
of classical logic with the temporal operators
since, until, next, and previous. Observing that
these operators can be viewed as searching for
regular events, one can be more general and
supply a temporal operator for each regular
language [15]. We denote standard temporal
logic by TL, and extended temporal logic (with
general regular events) by ETL.

It is natural to compare these potential query
languages. For propositional temporal databases
(corresponding to the case where the schema

consists of relations of arity zero, i.e., Boolean flags,
only), this issue is well understood. Since the
temporal operators of TL can easily be expressed
in Ts-FO, TL is trivially contained in Ts-ro. A
classical result ([10], see also [7]) states that
the converse containment holds as well: TL and
TS-FO are equivalent for propositional temporal
databases. This is often referred to as the
“expressive completeness” of propositional TL. It
is also known that ETL is strictly stronger than
these two languages in the propositional case: in
ETL, one can express that a certain property is
periodically true which is impossible in Ts-Fo.

How the languages compare in the general case
remained open. In this paper, we show that some
TS-FO queries are not expressible in ETL. Thus, TL
is not expressively complete, and TS-FO and ETL
are incomparable. We prove these results both for
finite temporal databases and for infinite ones.

Evidences for this result already existed since
1971 [9]. Indeed, Kamp obtained results implying
that TL is strictly weaker than Ts-r0 on the class of
densely ordered temporal structures, an essentially
different context. Moreover, Toman and Niwinski
[13] (still in the densely ordered case) showed
that no finite set of first-order temporal operators
can be added to TL so as to achieve expressive
completeness.

Also, in a previous paper, we established another
failure in the discrete first-order case of a classical
propositional result. Propositional TL with next
and wuntil only can simulate full propositional TL.
We showed in [2] that this is not true in the
predicate case. What was not pointed out there is
that this failure implies, in turn, the failure in the
discrete first-order case of the separation property
[5], a most fundamental property of propositional
TL known to be intimately related to its expressive
completeness.

An example of a query separating ETL and TS-FO
is “are there two distinct time instants at which
the staff consists of exactly the same employees?”
(on a temporal database recording the evolution
of a company’s staff). We prove our result by
developing a fine analysis of TL computations on
a class of temporal databases called “split” and
using a proof technique based on communication
complexity [16, 11]. To our knowledge, this is
the first time this tool is employed to analyze the

expressive power of query languages.

The paper is organized as follows. In Section 2,
we provide the necessary background. In Section 3,
we exhibit queries on finite temporal databases
that are expressible in Ts-FO but not in ETL. In
Section 4 we show that the techniques also apply to
the infinite case. Finally, in Section 5, we mention
conditions on the database that bring TL up to
the power of Ts-FO. We also discuss alternative
approaches that may provide different proofs of our
result.

2 Preliminaries

We assume some familiarity with relational data-
bases (see, e.g., [1]). A database schema is a finite
set of relation names, where each relation name
has an associated arity. An instance of a schema
assigns to each relation name a finite relation of ap-
propriate arity over a fixed countably infinite do-
main of data elements. The active domain of an
instance is the set of all data elements appearing
in some of its relations.

A temporal database over a database schema § is
a non-empty finite sequence I =1y,..., 1, (n > 1)
of instances of §. Every j € {1,...,n} is called
a state of I. The active domain of a temporal
database is the union of the active domains of its
instances.

The timestamp representation and the lan-
guage Ts-FO. We can identify a temporal data-
base I with a two-sorted relational structure called
the timestamp representation of 1. Data elements
are taken from the active domain of I, whereas
timestamps are from the set of states {1,...,n}.!
The timestamp representation also contains the lin-
ear order on the states as an explicit binary relation
<. Furthermore, it contains, for each relation R of
arity k£ in the database schema, an extended rela-
tion R of arity £ + 1. The first & columns of this
relation hold data elements; the last column holds
timestamps. The contents of this relation, denoted

'For clarity, we assume without loss of generality that
the domain of data elements is disjoint from the natural
numbers. However, it is sometimes possible (and interesting)
to simulate timestamps using data elements; we come back
to this issue in Section 5.

Figure 1: A temporal database and its timestamp
representation.

I(R), is
U) x {j}).

Example 2.1 A temporal database over a schema
consisting of a single unary relation S, together
with its timestamp representation are shown in
Figure 1.]

Using (two-sorted) first-order logic on the times-
tamp representation of a temporal database, we
obtain a query language that is denoted by Ts-Fo.
(The data-variables range over data elements and
time-variables over states.) The sorts of Ts-Fo
variables will be clear from the context.

Example 2.2 If S is a unary relation holding
employees of some company, the following Ts-Fo
formula expresses that z is an employee who has
been hired, later fired, and still later re-hired:

(Htl)(atg)(atg) (tl <ty <tz A
S(z,t)) A=S (2, t2) AS(x,t3)).

Extended temporal logic. An alternative way
of providing a temporal query language is to extend
first-order logic with temporal operators rather
than explicit time-variables. We will use temporal
operators based on regular events, leading to
extended temporal logic, denoted by ETL [15]. The
syntax of ETL over some database schema § is
obtained by using the formation rules for standard
first-order logic over § together with one additional
formation rule:

Let L be a regular language over the finite

alphabet (vq,...,vp), and let ¢y, ..., ¢, be
formulas. Then
L"’(c,ol,...,cpp) and L= (o155 0p)

are also formulas.

The order of the letters in the alphabet (vq,...,v,)
is relevant since it allows to relate these letters to
the arguments (¢1,...,¢p).

The semantics of ETL is as follows. Let I =
Ii,..., I, be a temporal database over §. Let
¢(z) be an ETL formula with free variables z =
Tiy,...,Tp, let @ = ay,...,a; be data elements in
the active domain of I, and let j € {1,...,n} be a
state. The truth of ¢[a] in I at time j, denoted by
I, j &= ¢lal, is defined as follows:

1. If ¢ is an atomic formula, a conjunction, a
negation, or a quantification, the definition is
as usual. Quantification is always on the active
domain.

2. If ¢ is of the form Lt (¢y,...,¢p), with L a
regular language over the alphabet (vy,...,v,),
then I,j | ¢[a] if there exists a word w =

Uy, Of length (n — j+ 1) in L such that

and Ln = [

Vi - e

LjF ¢ula and ...

3. Symmetrically, if ¢ is L7 (p1,...,9p), then
I, j = ¢la] if there exists a word w = vy, ... vy
of length 5 in L such that

LjE oula and ... and 1,1} ¢y, [al.

1

Example 2.3 The formula L} (true,), where L;
is the language a*ba* over the alphabet (a,b), is
true at time j iff there is some time in the future
of j (including j itself) where ¢ is true. Similarly,
LT (true,) expresses that ¢ holds sometime in the
past.

Now recall Example 2.2. The following ETL
formula is true of z at some time iff z is not a
staff member now, has been one in the past, and
will again be one in the future:

=S(2) ALY (S(x)) A LT (S()).

For another example, a formula which is true
only in the last (or first) state is L7 (true) (or
L3 (true)), where Ly is the singleton language {a}.

Finally, the formula L3 (true), where L3 is the
language (aa)*, is true in the first state iff the
length of the temporal database is even. [|

Example 2.4 The previous example showed how
the familiar temporal operators “sometimes in the
future” and “sometimes in the past” of standard
temporal logic [4] can be expressed in ETL. We next
show how the other temporal operators of standard
temporal logic can be expressed.

The temporal connectives since and until can be
expressed in ETL as follows:

psince v = L (p, p A1, true)

and
puntil v = LT (¢, 9 A, true),

where L4 is the language a*bc™ over the alphabet
(a,b,c). The connectives next and previous are
expressed as

next o = LT (true, o)

and

previous p = L (true, ¢),

where Lg is the language aba* over the alphabet

(a,b). [

Temporal logic, i.e., the fragment of ETL having
as only temporal operators since, until, next, and
previous, is denoted by TL.

The above examples also illustrate a subtle
feature of our definition. When searching for
a regular event in the future (using the L7
connective), we require that a word in L can be
found which reaches precisely the last state of the
temporal database. Similarly, when searching in
the past, a word must be found which reaches
precisely the first state. We refer to this as full
search, as opposed to partial search which does not
require the match to reach the beginning or end.
As illustrated in some of the above examples, it is
easy to simulate partial search using full search:
it suffices to continue testing for true after the
desired match has been found. Conversely, it can
be shown (proof omitted) that full search can be
simulated using partial search.

Boolean queries. A Boolean query on a class
of temporal databases over some fixed schema is a
mapping assigning true or false to each database in
the class. Every Ts-Fo sentence (formula without
free variables) defines a Boolean query in the
obvious way. Also every ETL sentence ¢ defines
a Boolean query @) in a natural way:

For temporal database I, Q(I) = true iff ¢ is
true on I at every state.

An alternative would be to require ¢ to be true
only at the first state, but this leads to the same
class of queries.

TL is obviously expressible in Ts-ro. For
example, to express that ¢ until ¢ holds at ¢, one
states that there exists ¢’ > ¢ such that ¢ holds
at t’ and ¢ holds at each t” between t and t'. As
shown in Example 2.3, the query “the length of the
temporal database is even” is expressible in ETL.
It is not expressible Ts-Fo, since parity of a linear
order is well-known not to be first-order definable.
In the next section, we will show that conversely,
there are queries expressible in TS-FO but not in
ETL. Since TL is a sublanguage of ETL, we will thus
establish that TL is strictly less expressive than
TS-FO.

3 TS-FO queries inexpressible in ETL

In this section, we first introduce a variant of the
communication protocols of [16] (see also [11]), and
introduce the notion of “constant communication
complexity” of binary predicates on sets of sets (of
data elements). We also introduce the class of split
temporal databases. Each binary predicate on sets
of sets gives rise to a query on split databases.
We then prove that if the communication complex-
ity of a predicate is not constant, then the corre-
sponding query is not expressible in ETL. However,
natural predicates of non-constant communication
complexity exist whose corresponding queries are
expressible in Ts-FoO.

3.1 Communication protocols

Let P be a binary predicate on sets of sets of data
elements. We say that P has constant communica-
tion complexity if there exist fixed natural numbers
k and r and a communication protocol between two
parties (denoted by A and B) that, for each finite
set D of data elements, can evaluate P(X,Y) on

any sets X and Y of non-empty subsets of D as
follows:

1. A gets X and B gets Y. Both parties also know
D.

2. A sends a message a1 = a1(D, X) to B, and B
replies with a message b; = b1(D, Y, a1) to A.
Each message is a k-ary relation on D.

3. A again sends a message az = az(D, X, b1) to
B, and B again replies with a message by =
b2 (D7 Y7 ay, a2)-

4. After r such message exchanges, both A and B
have enough information to evaluate P(X,Y)

correctly. Formally, they apply a Boolean
function

ary1(D, X, b1,...,b,) (for A)
or

bo41(D,Y,a1,...,a,) (for B)

that evaluates to true iff P(X,Y) is true.

So, formally, a protocol consists of the functions
(1y.eoyOpy@pyy and by, ..., 0,,b.41. Note that the
computing power of A and B is unlimited; the
functions defining the protocol can be completely
arbitrary.

Example 3.1 As a simple example, let P(X,Y)
be true if the maximal cardinality of an element
in X is larger than the maximal cardinality of an
element in Y. Then P has constant communication
complexity with £ =1 and r = 1. Indeed, A sends
to B an element of X with maximal cardinality, and
B replies with an analogous element for Y. Both
A and B can then evaluate P(X,Y) on their own,
by a simple comparison of cardinalities.

We have a first lemma:

Lemma 3.2 The equality, inclusion and disjoint-
ness predicates do not have constant communica-
tion complexity.

Proof. (Sketch) Suppose there is a communication
protocol for the equality predicate with r exchanges
of messages of arity k. Call any such sequence
aiby .. .a.b, of messages a dialogue. Since k is fixed,
for large enough D there are less dialogues than sets

of non-empty subsets of D. Hence, there are two
different such sets X and Y such that the protocol
yields the same dialogue when evaluating P(X, X)
and P(Y,Y). But then this same dialogue will also
be used for evaluating P(X,Y); a contradiction.
It follows that the inclusion and disjointness
predicates are not of constant communication com-
plexity either. Indeed, communication protocols
for these predicates can be easily transformed into
a communication protocol for equality. It suffices
to observe that X =Y iff X is included in ¥ and
vice versa, and that X C Y iff X and Y° are dis-
joint. [|

Our notion of communication protocols is a “set-
based” variant of the original bit-based one, where
the predicate to be evaluated is a predicate on bit-
strings, and the exchanged messages are individual
bits. Yao [16] showed in this setting that the
equality predicate on strings of length n requires
a number of bit exchanges that is linear in n.
Lemma 3.2 can also be proven from this fact.

3.2 Split databases

We now fix the database schema to consist of one
single unary relation S. A temporal database is
then a sequence of finite sets of data elements. A
temporal database is called split if there is exactly
one state whose instance is empty. This state is
called the middle state of the split database. If
I=1,...,1,is a split database with middle state
m then its right part I, ..., I, is denoted by I,y
and its left part Iy, ..., I, by L. Observe that
one can test in TL whether a temporal database is
split.

We next define an auxiliary language split-ETL
whose semantics is only defined on split databases.
Syntactically, split-ETL differs from ETL only in
that each temporal operator LT (L7) is split into
a “left” and a “right” version L?;ﬁ and L:—ight (Liest
and L ,.).

Informally, the left (right) version of a temporal
operator behaves roughly the same as the operator
itself, except that only the left (right) part of
the split database is taken into consideration.
Formally, let I be a split database of length n with
middle state m. For each state 7 of I we define

ife() = {?

m ifj>m

if j<m

and

1 if j<m
j—m+1

right(j) := { it > m
So, left(j) (right(j)) is the state in the left (right)
part of I corresponding to 7, if j is indeed contained
in that part; if not, the default values m and 1,
respectively, are used.

The semantics of the split temporal operators is
then defined as follows. For x being either — or +,
LjE Ly g i Liepe, left(j) E L*, and I, j E Ly if
Iright7 Tight(j)): L*.

We now have our second lemma.

Lemma 3.3 On split databases, each ETL formula
is equivalent to a split-ETL formula.

Proof. (Sketch) Consider a temporal operator L™
of ETL, with L a regular language over the alphabet
(vi,...,v,). Then L is defined by some finite
automaton M. Let the states of M be numbered
1,...,q, with 1 the initial state, and let I be
the set of final states. For z € {1,...,¢} and
Z CAl,...,q},let M.z be the automaton obtained
from M by changing the initial state to z and the
set of final states to Z, and denote by L.z the
language defined by M.z. Let vy a symbol not in
the alphabet {vy,...,v,}. Then the ETL formula
LT (¢1,...,¢,) can be expressed in split-ETL as

((at_right v at_middle) N sz’ght(‘folv e Pp)) V

q
(at_left A \/ ((Ll{z})iﬁ (9917 R @p) N

z=1

(vosz);Qght (true, ¢y, .. '79927)))‘

In the above, the language volL.p is interpreted
over the alphabet (vg, vq,...,v,), and we have used
the abbreviations

at_middle = —(3z)5(x);
at_left = Kl";ﬁ (true, at_middle);
at_right = K, (true, at_middle),

where K is the language a™b over the alphabet
(a,b).

The case L~ is treated similarly.]

3.3 Inexpressibility

Let P be a binary predicate on sets of sets, as
in Subsection 3.1. Consider the Boolean query
@Qp on split databases defined as follows. For a
split database I = I4,..., I, with middle state m,
Qp(I) = trueif P(L, R) holds, where L = {[; | 1 <
j<m}and R={l; | m<j<n}.

Our third lemma connects temporal queries to
communication protocols:

Lemma 3.4 If Qp is expressible in BTL, then P
has constant communication complexity.

Proof. (Sketch) Assume @Qp is expressible in ETL.
By Lemma 3.3, @p is expressible by a split-ETL
formula 8. Consider all subformulas of & of the form
L3(...), where x is + or — and 6 is left or right,
and let w1, ..., m be a listing of these such that
each subformula occurs after its own subformulas.
Let k£ be the maximal number of free variables of
any of these subformulas. We show that 8 yields a
communication protocol for P with r exchanges of
messages of arity k.

Let X and Y be two sets of non-empty subsets
of a finite set D of data elements, and consider any
split temporal database I with middle state m, such
that X = {[; |1 <j<m}and Y ={[; | m <
J < n}. In order to evaluate P(X,Y), it suffices
to evaluate Qp(I), for which in turn it suffices to
evaluate 6 at some state of I. To do the latter, the
parties evaluate, in succession, each subformula 7;
on every k-tuple of active domain elements, at the
middle state. If the temporal operator of 7; is a
left (right) version, then A (B) knows how to do
this and he sends the resulting k-ary relation to B
(A). (Note in this respect that both parties can be
assumed, without loss of generality, to know the
active domain of I; if not, they can send the set of
elements of D appearing in their set of sets to each
other in a single exchange of messages.) When the
values of all the 7; are known to both parties, they
have enough information to evaluate 6. [|

Putting everything together, we obtain our main
result:

Theorem 3.5 Qver schemas containing at least
one relation of non-zero arity, there are queries
expressible in TS-FO but not in BETL. In particular,
query @ “are there two different states with the

same instance?” is expressible in TS-FO but not
in ETL.

Proof. (Sketch) For simplicity we assume the
schema consists of a single unary relation S. Query
(2 is obviously expressible in Ts-FoO:

3 F)(t £t A (Vo) (S(x,t) & S(z,t)).

On the class of split databases whose left and right
parts do not contain repetitions, () corresponds to
@ p, where P is the non-disjointness predicate. By
Lemma 3.2, the complement of P (so also P itself)
does not have constant communication complexity.
Hence, by Lemma 3.4, (J is not expressible in ETL.

|

Corollary 3.6 Over schemas containing at least
one relation of non-zero arity, TL is strictly less
expressive than TS-FO.

Note that our result remains valid under the
assumption that the data elements are totally
ordered. Indeed, the proof of Lemma 3.2 holds
regardless of any knowledge (e.g., total order) the
parties may have of the set D.

4 Infinite temporal databases

In this section, we extend our result to the
case of infinite (but still discrete-time) temporal
databases.

An infinite temporal database over a schema &
is an infinite sequence I = Iy, I, ..
S. So, the set of states is the set of non-negative
natural numbers, and the active domain may be
infinite (although every individual instance is, by
definition, still finite). In the present discussion,
we focus on expressiveness, and not on the issue
of finitely representing an infinite temporal data-
base, or effectively computing answers to queries.
References on these issues can be found in [3].

The query languages TS-FO and ETL can also be
used on infinite temporal databases. For Ts-Fo,
this is clear. For ETL, one uses w-languages rather
than ordinary languages in defining the semantics
of the future temporal operators, since the future
of every state is now infinite. The past of every
state is, on the contrary, still finite. (All our
results extend easily to the case of two-way infinite
temporal databases.) Recall [8] that an w-language

. of instances of

is a set of infinite, rather than finite, words, and
that a regular w-language can still be defined by a
finite automaton; an infinite word is accepted by
the automaton if while reading the word it enters
an accepting state infinitely often.

We now argue that our techniques of the previous
section extend to the infinite case. An infinite
temporal database is again called split if there
is exactly one state whose instance is empty.
The right part of an infinite split database is
itself infinite; the left part is finite. Syntax and
semantics of split-ETL on infinite split databases
are defined in terms of ETL exactly as before. The
result that split-ETL can simulate ETL on split
databases goes through in the infinite case; the only
modification to the proof of Lemma 3.3 is that in
the large expression for LT, L.r now becomes an
w-language. Finally, the proof of Lemma 3.4 carries
over verbatim, with the condition that instead of a
finite I = I, ..., I, we use an infinite I = I, I5, ...,
and instead of {I; | m < j < n} we use {[; |
m < j}. Note that this implies that party B of the
protocol deals with an infinite object, but this is of
no concern since his computing power is unlimited.

We thus have:

Theorem 4.1 On infinite temporal databases over
a scheme containing at least one relation of non-
zero arity, there are queries expressible in TS-FO
but not in ETL. As a consequence, TL is strictly
weaker than TS-FO on infinite temporal databases.

5 Discussion

To conclude, we mention some cases in which Ts-FoO
is not more powerful than TL. We also discuss
alternative approaches that may provide different
proofs of our result.

Local time. For clarity, we have separated the
data elements in a temporal database from the
natural numbers used to number its states. If,
however, one allows these natural numbers to be
stored in the database instances, an interesting
special case can be indicated in which TL is
expressively complete, i.e., equivalent to Ts-FoO.
More specifically, assume the database schema
contains a unary relation Time, and assume the
contents of that relation at the i-th state is the

singleton {i}. Temporal databases of this kind are

said to have local time. The local time assumption
is quite realistic in practice, and has been made,
e.g., by Gabby and McBrien [6]. It also seems to
be implicitly made by Tuzhilin and Clifford [14].
We note:

Proposition 5.1 On local-time databases, TL is
equivalent to TS-FO.

Proof. (Sketch) The proposition holds because on
the class of local-time temporal databases, both the
timestamp representation of the database as the
linear order on the timestamps are definable in TL.
Indeed, for a relation R, the timestamped relation
R consists simply of all tuples (u, 1), where uis in R
at some state and ¢ is the contents of Time at that
state. This is readily expressible in TL. The linear
order ¢t < t' on timestamps then corresponds to
saying that ¢ is the contents of Time at some state
and t’ is the contents of Time at a later state. Also
this is readily expressed in TL.]

The above proposition provides an a posteriori
justification of the, at first sight erroneous, expres-
sive completeness claims on TL made in [6, 14].

Actually, by essentially the same argument, a
more general result can be proven. Let ¢(z) be
an arbitrary fixed TL-formula. For each state j of
a temporal database I, ¢ defines a relation ¢(/;) on
the j-th instance I;. If ¢(I;) and () are disjoint
for any two different states j and £, I is called ¢-
disjoint. Observing that ¢(/;) can then be used as
a simulation of the timestamp j, it can be shown
that:

Proposition 5.2 On the class of p-disjoint data-
bases, TL is equivalent to TS-FO.

For example, local-time databases are ¢-disjoint
with ¢ simply being Time(z).
point are insert-only databases where for each 7,
the instance at state j + 1 is obtained from the
instance at state j by inserting a non-zero number
of tuples in some of the relations. Insert-only
databases are ¢-disjoint with ¢ being V(R(Z) A
— previous R(Z)) (where the disjunction is over all
relations R in the schema).

Another case in

In temporal logics with iteration capabilities,
even more powerful simulations of timestamps by
tuples of data elements are possible [2].

Other possible approaches. An alternative
approach to establish our Corollary 3.6 would be
to prove that TS-F0?, the 3 time-variable fragment
of TS-FO, is strictly less expressive than full Ts-ro.
Indeed, it is known and not difficult to verify that
every TL query is already expressible by a formula
in TS-FO using at most 3 distinct time-variables.
Note that our proof of Theorem 3.5 implies that
TL is strictly contained in Ts-ro?; actually, the
proof shows that even some TS-F0? queries are not
expressible in TL.

More generally, one might conjecture that there
is a strict hierarchy in expressive power among the
fragments Ts-FOF for each k. (It is known that
Ts-ro! C4 TS-FO? Cx TS-FO?.) A closely related
question is whether there is a strict Fo®-hierarchy
on the class of ordered finite graphs. Here, Fo*
denotes the k variable fragment of standard first-
order logic on ordered graphs.

On might also try to separate TL and TS-FO with
a proof based on Ehrenfeucht-Fraissé style games.
Segoufin [12] designed a very elegant extension
of Ehrenfeucht-Fraissé games capturing precisely
the expressive power of TL. In our experience,
however, it is quite hard to explicitly construct
families of pairs of temporal databases that are
indistinguishable in TL. Our approach based on
communication complexity turned out to be more
Our proof is robust under built-in
relations on data elements, such as total order, and

successful.

at the same time separates the more powerful ETL
from TS-FO.

Acknowledgments

We thank Luc Segoufin for pointing out the relation
to communication complexity, and Victor Vianu for
raising the TS-ro” issue. We thank them both for
helpful discussions and encouragements.

References

[1] S. Abiteboul, R. Hull and V. Vianu, Founda-
tions of Databases, Addison-Wesley, Reading-
Massachusetts. 1994.

[2] S. Abiteboul, L. Herr, and J. Van den Bussche.
Temporal connectives versus explicit times-
tamps in temporal query languages. In J. Clif-
ford and A. Tuzhilin, editors, Recent Advances

in Temporal Databases, Workshops in Com-
puting, pages 43-57. Springer-Verlag, 1995.

J. Chomicki. Temporal query languages: a
survey. In D.M. Gabbay and H.J. Ohlbach,
editors, Temporal Logic: IC'TL’94, volume 827
of Lecture Notes in Computer Science, pages
506-534. Springer-Verlag, 1994.

E.A. Emerson. Temporal and modal logic.
In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, volume B. Elsevier,
1990.

D. Gabbay. The declarative past and the
imperative future: Executable temporal logic
for interactive systems. In B. Baniegbal,
B. Barringer, and A. Pnueli, editors, Temporal
Logic in Specification, volume 398 of Lecture
Notes in Computer Science, pages 409-448.
Springer-Verlag, 1989.

D. Gabbay and P. McBrien. Temporal logic
and historical databases. In Proceedings
17th International Conference on Very Large
Databases, pages 423-430, 1991.

D.M. Gabbay, I. Hodkinson, and M. Reynolds.
Temporal Logic, Mathematical Foundations
and Computational Aspects, volume 1 of Oz-
Jord Logic Guides.

D. Perrin. Finite automata. In J. van Leeuwen,
editor, Handbook of Theoretical Computer
Science, volume B. Elsevier, 1990. Oxford
University Press, 1994.

H. Kamp. Formal properties of ‘now’. Theoria,
37:227-273, 1971.

J.AAW. Kamp. Tense Logic and the Theory
of Linear Order. PhD thesis, University of
California, Los Angeles, 1968.

C.H. Papadimitriou. Computational Complez-
ity. Addison-Wesley, 1994.

L. Segoufin. Temporal logic and games.

INRIA, VERSO, 1995.

D. Toman and D. Niwinski. First-order queries
over temporal databases inexpressible in tem-
poral logic. Dept. of Comp. and Info. Sci-

[14]

ence, Kansas State University, 1995. To ap-
pear in Proceedings 5th International Confer-
ence on Extending Database Technology, Avi-
gnon, France, March 1996.

A. Tuzhilin and J. Clifford. A temporal re-
lational algebra as a basis for temporal rela-
tional completeness. In D. McLeod, R. Sacks-
Davis, and H. Schek, editors, Proceedings of
the 16th International Conference on Very
Large Data Bases, pages 13-23. Morgan Kauf-
mann, 1990.

P. Wolper.
expressive.
93, 1983.

Temporal logic can be more
Information and Control, 56:72—

A. C.-C. Yao. Some complexity questions re-
lated to distributive computing. In Proceed-
ings 11th ACM Symposium on the Theory of
Computing, pages 294-300, 1979.

