
A Theory of Stream Queries

Yuri Gurevich1, Dirk Leinders2, and Jan Van den Bussche2

1 Microsoft Research
gurevich@microsoft.com

2 Hasselt University and Transnational University of Limburg
{dirk.leinders,jan.vandenbussche}@uhasselt.be

Abstract. Data streams are modeled as infinite or finite sequences of
data elements coming from an arbitrary but fixed universe. The uni-
verse can have various built-in functions and predicates. Stream queries
are modeled as functions from streams to streams. Both timed and un-
timed settings are considered. Issues investigated include abstract defini-
tions of computability of stream queries; the connection between abstract
computability, continuity, monotonicity, and non-blocking operators; and
bounded memory computability of stream queries using abstract state
machines (ASMs).

1 Introduction

Over the past few years in the database systems research community, much at-
tention has been paid to query languages and query processing for data streams.
We give just a few references here [15,5,6,14,7]; much more has been published.
Stream queries are typically “continuous” in that their result must be continu-
ally updated as new data arrives: indeed, stream applications are “data-driven”.
Consequently, continuous stream queries must be computed in an incremental
fashion, using so-called “non-blocking” operators. Relational algebra operators
that are monotone are non-blocking; query operators that are not monotone,
such as difference, or grouping and aggregation, are typically made non-blocking
by restricting them to sliding windows.

The aim of this paper is to offer a theoretical framework that attempts to clar-
ify various philosophical questions about stream queries. For instance, if streams
are thought of as infinite, and arbitrary queries are modeled as functions from
streams to streams, what does it mean for a query to be computable? Is com-
putability the same concept as continuity? What is the precise connection be-
tween continuity and monotonicity? Can one give a formal definition of what it
means for an arbitrary operator to be non-blocking?

Earlier work in this direction has already been reported by Arasu and Widom
[3] and by Law, Wang and Zaniolo [12]. Our work has the following new features:

1. We distinguish from the outset between timed and untimed applications. In a
timed setting, the timestamps in the output stream of some stream query are
synchronized with the timestamps in the input stream; in an untimed setting,
they are not. The usual applications mentioned in the data stream literature,

M. Arenas and M.I. Schwartzbach (Eds.): DBPL 2007, LNCS 4797, pp. 153–168, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

154 Y. Gurevich, D. Leinders, and J. Van den Bussche

such as stock quotes or sensors, are timed. Nevertheless, untimed streams also
find applications, e.g., in audio or video streams, or Internet broadcasts, where
the logical order among arriving packets is more important than precise tim-
ing information. More fundamentally, however, much of the theory of stream
queries can already be developed on the more basic untimed level, viewing
timed streams merely as a special case of untimed streams. Nonetheless, we
will also identify some specific aspects of timed queries, in particular, their
non-predicting nature (in a sense that will be made precise later).

2. Our formal definitions of abstract computable stream queries are grounded
in the theory of type-2 effectivity (TTE) [16]. This is a well-established
theory of computability on infinite strings (and much more, which we will
not use here). The basic idea of TTE, strikingly analogous to the idea of
continuous stream queries, is that arbitrary long finite prefixes of the infinite
output can be computed from longer and longer finite prefixes of the infinite
input. A basic insight from TTE is that computable functions on infinite
strings are indeed “continuous”, but now in the precise sense of mathematical
topology. More specifically, under a natural metric on infinite strings (known
as the Cantor metric), where two strings are closer the longer they agree on
their prefixes, computable functions can be shown to be continuous in the
standard mathematical sense of the word. Continuity is a useful property
for it provides us with a principled way to prove that not just any function
from streams to streams can be naturally considered to be a stream query.

3. Our theory is abstract in the sense that elements from a stream can come
from an arbitrary universe, equipped with predicates and functions. In math-
ematical logic one speaks of a structure, and we will refer to the universe as
the background structure. In particular, we do not concern ourselves with the
encoding of stream elements as bitstrings (finite or infinite), or with Turing
machine computations on those bitstrings, since those aspects are already
well understood from the TTE. Consequently, our theory is very general,
and computable stream queries will turn out to be the same thing as con-
tinuous functions from streams to streams (where we introduce a variant of
the Cantor topology that accommodates finite as well as infinite streams).

4. We define a concrete computation model for stream queries, called “stream-
ing ASM”. Due to the abstract nature of our theory, streaming ASMs are
naturally based on (sequential) Abstract State Machines [9,10]. Every com-
putable stream query is computable by a streaming ASM with an appro-
priate background structure. Moreover, streaming ASMs allow us to prove
impossibility results. Specifically, we focus on bounded memory machines:
such machines can only remember a constant number of previously seen
stream elements. Bounded memory machines are natural in the context of
query processing; for example, any query operator that applies a sliding win-
dow (typical in streaming applications) is computable in bounded memory.
Bounded memory evaluation of stream queries was already emphasized by
Arasu et al. [1]. We will prove that there exist simple queries that are not
bounded memory computable, one of the simplest being the query inter-

sect: finding the common elements in two interleaved streams.

A Theory of Stream Queries 155

The present paper is a companion to our paper with Grohe, Schweikardt, and
Tyszkiewicz [8] on Finite Cursor Machines (FCM). There, we studied classical
database query processing using a bounded number of one-way cursors over the
database relations. Streaming ASMs are similar to FCMs, but a crucial difference
is that a streaming ASM has only one cursor, and this cursor is manipulated
by the stream rather than by the machine (recall the data-driven nature of
streaming applications). So, FCMs are unrealistically powerful in the context of
data streams, because they can control their own cursors, which is only realistic
when the stream is fully given as a completed, finite input list. In particular,
FCMs are certainly at least as powerful as streaming ASMs. Since we already
know that the query intersect mentioned above is not even computable by
an FCM, it follows by a reduction that the query is also not computable by
a streaming ASM. Yet, in this paper we will give a direct proof of this result,
that is much simpler and thus provides more direct insight on the limitations
of bounded memory stream processing. Moreover, we will see that there exist
stream queries that are computable by an FCM, but not by a streaming ASM.

We must also note that Arasu et al. have already presented impossibility
results for bounded memory evaluation of stream queries [1], which seem to
encompass, for example, the result on the query intersect which we prove in
this paper. Their impossibility proofs, however, assume that stream elements are
encoded in bits: they show, for instance, that intersect cannot be computed
in o(n) bits of memory. Our proof shows how to perform such impossibility
arguments on a level where elements can be stored in their entirety as abstract
objects. Note that it is not so easy to reduce the abstract level to the bit level,
because in o(n) bits of memory we cannot simply encode on the fly all elements
we encounter as binary numbers, and still remember whether we have already
seen some element earlier. More generally, there seems to be a discrepancy in the
mentioned paper [1] between the computation model assumed for the positive
results, and that assumed for the negative results (that for the negative results
appears weaker).

2 Abstract Computability

Basically, we assume a universe U of data elements. A stream is a possibly infinite
sequence of data elements. The set of all streams is denoted by Stream, and the
set of all finite streams is denoted by finStream. Thus finStream ⊆ Stream. We
denote the i-th element of a stream s by si.

Our model of streams is very abstract and thus very general.

Example 1. Consider measurements coming from sensors, where each entry is a
pair of the form (i, m) with i a sensor identifier and m a measurement. Suppose,
at each discrete time point t (with time points modeled by natural numbers),
we collect all entries that arrived in the interval (t − 1, t]. Then U would contain
sets of entries as data elements.

156 Y. Gurevich, D. Leinders, and J. Van den Bussche

In a setting where time points would be more fine-grained, so that at most
one entry can arrive per clock tick, U would contain entries directly as data
elements, plus possibly some dummy element to indicate no entry arrived. ��
Mathematically, a stream query is simply a mapping from Stream to Stream. Not
all such mappings make sense in the streaming context, however. To make for-
mal which queries do make sense, we define the notion of abstract computability.
Intuitively, a stream query Q is abstract computable if there exists a function
K : finStream → finStream such that the result of Q can be obtained by con-
catenating the results of K applied to larger and larger prefixes of the input.

Formally, for any K as above, we define the function

Repeat(K) : s �→
size(s)⊙

k=0

K(s≤k) of type Stream → Stream,

where s≤k is the prefix of s of length k, and size(s) is the length of s in case s
is finite, and ∞ in case s is infinite (in which case the index k ranges over all
natural numbers). Here

⊙
denotes concatenation. We now define:

Definition 2. A query Q : Stream → Stream is abstract computable if there
exists a function K such that Q = Repeat(K). We call K a kernel for Q.

The following example shows an abstract computable stream query:

Example 3. Let Q be the running average query, defined on streams of natural
numbers and returning at each step the average value of the numbers arrived so
far. The function returning (

∑
ui)/n on input stream u1 . . . un (and returning

the empty stream when the input is the empty stream) is a kernel for Q. ��
In connection to finite streams, we make the following two important observa-
tions:

1. The answer to an abstract computable query on an infinite stream can be
finite.
Example 4. Consider the query Q that returns all elements in the input
stream satisfying a certain predicate P . On a stream with only a finite num-
ber of elements satisfying P , the result of Q will be finite. Note that this
query Q indeed has a kernel: for example the function K that given a finite
stream, returns its last element if it satisfies P , and returns the empty stream
otherwise, is a kernel for Q. ��

2. The answer to an abstract computable query on a finite stream must be finite.
Indeed, the result of K is always a finite stream and on a finite input stream,
K is applied only a finite number of times. So, queries transforming finite
streams into infinite streams will never be computable in our model. This
is not a problem since our model is primarily meant to capture input-data-
driven computations.

We note:

Proposition 5. Abstract computable stream queries are closed under composi-
tion.

A Theory of Stream Queries 157

3 Continuity

We will now see that abstract computability and continuity of stream queries
coincide.

Recall from elementary calculus [4] that a real function f : R → R is called
continuous if for all x ∈ R, for every neighborhood around f(x), there exists
a neighborhood around x that is completely mapped into the neighborhood of
f(x). In order to generalize this definition of continuity to stream queries, we
must first agree on a definition of neighborhood of a stream s. In other words,
we need to define a suitable topology on streams.

For infinite streams, there is a standard topology, known from computable
analysis [16], called the Cantor topology. This topology arises from the following
metric (distance function) on infinite streams:

d(s, s′) =

{
0 if s = s′,
2−n if s 	= s′ and n = min{i | si 	= s′i}.

According to this topology, open balls around an infinite stream s are sets of the
form B(p), with p some finite prefix of s, defined as follows:

B(p) = {s′ infinite stream | p is a prefix of s′}.

In this paper, we generalize this notion of open ball to the setting of both
finite and infinite streams, as follows:

Definition 6. Let p ∈ finStream. Then

B(p) := {s′ ∈ Stream | p is a prefix of s′}.

Any set of the form B(p), for some p ∈ finStream, is called an open ball. Ele-
ments of B(p) are called continuations of p.

This notion of open ball gives rise to a topology on streams, and the notion of
continuity then amounts to the following:

Definition 7. Q : Stream → Stream is continuous if for every open ball B, the
pre-image Q−1(B) is a union (possibly infinite) of open balls.

Remark 8. The Cantor metric described above has only been defined on infinite
streams. One may wonder whether the topology on Stream given by Definition 6
can be given by some metric of that sort but applicable to finite as well as infinite
streams. The answer is negative: metrizable topologies must be Hausdorff, and
our topology is not. Indeed, an infinite stream q and a finite prefix p of q can not
be separated as each open ball containing p contains q. For basic background
on topology, we refer to Hocking and Young [11].

Theorem 9. Let Q be a stream query mapping finite inputs to finite outputs.
Then Q is abstract computable if and only if Q is continuous.

158 Y. Gurevich, D. Leinders, and J. Van den Bussche

Proof. For the only-if direction let K be a kernel for Q, i.e., Q = Repeat(K).
Consider X := B(p). Let s be a stream in Q−1(X). Then, from some natural
number � on, we know that

⊙�
k=0 K(s≤k) starts with p. Consider then the open

ball B(s1 . . . s�). Every s′ ∈ B(s1 . . . s�) is mapped into X. Indeed,

Q(s′) =
�⊙

k=0

K(s≤k)

size(s)⊙

k=�+1

K(s′≤k)

clearly starts with p. Thus, s ∈ B(s1 . . . s�) ⊆ Q−1(X), as desired.
For the if-direction, we define a kernel K for Q as follows. K(()) := Q(()), and

K(su) := Q(su) − Q(s), where the difference is to be interpreted as removing a
prefix, so that Q(su) = Q(s)
K(su). Note that Q(s) and Q(su) are both finite.

For K to be well-defined, we must show that Q(s) is indeed a prefix of Q(su).
Consider X = Q−1(B(Q(s))). By continuity, X is a union of open balls. Thus,
there must be an open ball B(p) with s ∈ B(p) ⊆ X. Clearly, p must be a prefix
of s. But then also su ∈ B(p) ⊆ X, and therefore Q(su) ∈ B(Q(s)). This means
that Q(s) is a prefix of Q(su).

We now show that Repeat(K) = Q by showing that they have the same
prefixes. By construction, Repeat(K) coincides with Q on finite streams. Let
s = s1s2 . . . be an infinite stream and let v1 . . . vj be an arbitrary prefix of
Repeat(K)(s). Let i be the smallest natural number such that v1 . . . vj is a prefix
of Repeat(K)(s1 . . . si) = Q(s1 . . . si). Since Q(s) ∈ B(Q(s1 . . . si)), we have
v1 . . . vj also as a prefix of Q(s). We conclude that every prefix of Repeat(K)(s)
is also a prefix of Q(s).

For the other direction, let v1 . . . vj be an arbitrary prefix of Q(s). By continu-
ity, v1 . . . vj is also a prefix of Q(s1 . . . si) for some i. Since Repeat(K)(s1 . . . si) =
Q(s1 . . . si), we have v1 . . . vj also as a prefix of Repeat(K)(s1 . . . si), which by
construction is itself a prefix of Repeat(K)(s), as desired. ��

Theorem 9 can be used to prove that there are simple stream queries that are
not abstract computable.

Example 10. Consider the following query check. Let a, b ∈ U and let s be
a stream over U. Then check(s) is the stream (a) if b does not occur in s;
otherwise, check(s) is the empty stream (). This query is not abstract com-
putable; we prove that check is not continuous. Consider the open ball B(a).
Clearly, the empty stream () is in check

−1(B(a)). The only open ball that con-
tains the empty stream is B(()). This open ball, however, is not included into
check

−1(B(a)). Indeed, (b) ∈ B(()), but check(b) = () 	∈ B(a). ��

Remark 11. In connection to Theorem 9 we remark the following:

1. Suppose we would have extended the Cantor metric to finite (as well as
infinite) streams in the obvious manner; in particular, if s is a finite prefix
of s′, but s 	= s′, then we define d(s, s′) = 2−(n+1) with n the length of
s. In the resulting topology, abstract computable queries need no longer be
continuous. A simple example is provided by the query Q from Example 4.

A Theory of Stream Queries 159

Let U := {a, b} and let P be true of a and false of b. Consider the open ball
B containing only the empty stream (). Then Q maps the infinite stream b
containing only b’s into B. Any open ball B(p) around b, however, contains
the stream pa which is not in Q−1(B). Thus, Q is not continuous.

2. The qualification in Theorem 9 that Q must map finite inputs to finite
outputs is important for the if-direction. Indeed, any constant query, that
always outputs some fixed infinite stream, is continuous, but not abstract
computable (precisely because it maps finite to infinite).

4 The Finite Case

Considering only finite streams makes the situation simpler. Define a finite
stream query as a mapping from finStream to finStream. Define abstract com-
putability of finite stream queries in the same way as for queries on Stream, and
consider the topology on finStream induced by the topology on Stream, i.e., the
open balls are now finite continuations of finite streams. We will use the notation
Bfin(p) to denote the set of all finite continuations of the finite stream p. We
then indeed have:

Proposition 12. A finite stream query is abstract computable if and only if it
is continuous.

In the finite case, there is also a third equivalent notion: monotonicity. A query
Q : finStream → finStream is called monotone if for all s, s′ ∈ finStream, s � s′

implies Q(s) � Q(s′), where � denotes the “prefix of” relation.

Proposition 13. A finite stream query is continuous if and only if it is monotone.

Proof. For the if-direction let Q : finStream → finStream be monotone. Consider
X := Bfin(p). Let s be a stream in Q−1(X). Then, s ∈ Bfin(s) ⊆ Q−1(X).
Indeed, s′ ∈ Bfin(s) implies s � s′, which by monotonicity implies Q(s) � Q(s′).
As Q(s) has p as a prefix, Q(s′) has p as a prefix too and thus Q(s′) ∈ X.

The only-if direction is proved by the argument already used in the proof of
the if-direction of Theorem 9, where we showed that K is well-defined. Con-
cretely, let Q : finStream → finStream be continuous. Let s � s′. Consider
X := Q−1(Bfin(Q(s))). By continuity, X is a union of open balls. Thus, there
must be an open ball Bfin(p) with s ∈ Bfin(p) ⊆ X. Clearly, p must be a prefix
of s. But then also s′ ∈ Bfin(p) ⊆ X, and therefore Q(s′) ∈ Bfin(Q(s)). This
means that Q(s) � Q(s′). ��

As a corollary we obtain the following equivalence already noted by Law, Wang
and Zaniolo (LWZ), who referred to our notion of abstract computability as
computability by a “nonblocking” operator:

Corollary 14 ([12]). Let Q be a finite stream query. Q is computable by a
nonblocking operator if and only if Q is monotone.

160 Y. Gurevich, D. Leinders, and J. Van den Bussche

The proof given by LWZ is slightly confusing. Their formalism is based on a
notion of queries on finite streams that are computable by (not necessarily non-
blocking) “operators”. They fail to mention, however, that any query on finite
streams is computable by such an operator.

5 Time

In some applications, the output stream is synchronized with the input stream.
In such cases, we need an additional requirement on stream queries beyond mere
abstract computability.

Example 15. Consider the following instance of the query from Example 4: the
input is a stream of numbers (e.g., sensor readings) and the output consists of
all readings below a certain threshold, say 0. In an “untimed” setting, where the
original time points of the output readings are not required by the client of the
query, we can simply formalize this stream query as being abstract computable
with kernel function K0 with K0(()) = (), and

K0(su) =

{
u if u < 0
() otherwise.

On the other hand, in a “timed” setting stream positions in the output are
supposed to be synchronized with stream positions in the input [3,2]. In that
case, the above formalization is inadequate, because, the 5th element of the
output may well be, say, the 10th element of the input!

A more proper computation would be given by the function K1 with again
K1(()) = (), and now

K1(su) =

{
u if u < 0
null otherwise.

where null is an explicitly visible element denoting that the reading at this time
point was not below 0. ��

The above discussion motivates:

Definition 16. A stream query Q is synchronous abstract computable (SAC) if
Q = Repeat(K) for some kernel K : finStream → finStream such that K(()) = ()
and every other K(s) is of length one. We will call such kernel K a length-one
kernel.

SAC stream queries can be characterized by means of non-predicting queries.
Here and below, N0 stands for the set of natural numbers without zero.

Definition 17. A stream query Q is non-predicting if for all streams s and s′

and for all t ∈ N0 such that s≤t = (s′)≤t, we have Q(s)t = Q(s′)t.

A Theory of Stream Queries 161

We note that non-predicting is part of the definition of “stream operator” by
Arasu, Babu and Widom [3,2].

Proposition 18. A stream query is SAC if and only if it is non-predicting.

Proof. Let K be a length-one kernel for stream query Q. Let s, s′ ∈ Stream and
t ∈ N0 such that s≤t = (s′)≤t. Then

Q(s)t = K(s≤t) = K((s′)≤t) = Q(s′)t

and thus Q is non-predicting.
For the “if” direction, let Q be non-predicting. For each finite stream p of

length t, define π(p) as the infinite stream with π(p)i = pi for i ≤ t and with
π(p)i = pt for i > t. Then the following function K is a length-one kernel for Q.
If p is a finite stream of length t then K(p) := Q(π(p))t.

Furthermore, for each stream s and any time instant t, define π′(s, t) as the
infinite stream with π′(s, t)i = si for i ≤ t and with π′(s, t)i = st for i > t. We
now prove that K is indeed as desired. Let s be a stream and let t be a time
instant. Then

Q(s)t = Q(π′(s, t))t = Q(π(s≤t))t = K(s≤t).

Here, the first equality follows from the fact that Q is non-predicting; the second
equality follows from the definition of π′(s, t); and the third equality follows from
the definition of K. ��

We also have:

Proposition 19. SAC stream queries are closed under composition.

6 Complexity Limitations

The definition of abstract computability does not impose any restriction on K:
the function is not even required to be computable, neither in the classical sense
nor in the sense of TTE. The results in the previous sections are thus very
general.

To further study the limitations of streaming applications, however, such re-
strictions are necessary. Concretely, for a class C of functions from finStream
to finStream, we say that a query Q : Stream → Stream is abstract computable
modulo C if Q has a kernel K in C. The class C could for example be the class
of functions computable in the classical sense or in the sense of TTE; or—as
in the “streaming model of computation” [5]—C could be the class of functions
incrementally computable in polylog space and in polylog time per data element.

In the next section, we will define several classes C of functions computable by
a concrete model based on the Abstract State Machine (ASM) methodology [9],
that we will call “streaming ASM” (sASM). We will study abstract computability
modulo the classes C obtained by altering the computation power of the model.

162 Y. Gurevich, D. Leinders, and J. Van den Bussche

7 Streaming ASMs

An abstract state machine (ASM) is a transition system whose states are many-
sorted first-order structures. Transitions change the interpretation of some of the
function and relation symbols—those in the dynamic part of the vocabulary—
and leave the remaining symbols—those in the static part of the vocabulary—
unchanged. The part of the structure that is never changed during state transi-
tions, i.e., the structure over the static part of the vocabulary, is typically called
the background structure. Transitions are described by simple rules that produce
state updates which are “fired” simultaneously (if they are inconsistent, no up-
date is carried out). A crucial property of the sequential ASM model is that in
each transition only a limited part of the state is changed. The detailed definition
of sequential ASMs is given in the Lipari guide [9].

We now describe the streaming abstract state machine (sASM) model.

The states: The base set of any state, i.e., the universe of the structure in the
sense of logic, contains at least our universe U of data elements. We assume that
U contains an element ⊥.

The static functions and predicates on the base set include, but are not limited
to, the functions and predicates defined on U.

Each state of an sASM contains a finite number of dynamic functions on
the base set. There are always the nullary dynamic function in and a number
of nullary dynamic functions, called output registers, denoted by out , possibly
with subscripts. The output registers and in take values in U.

The names of the static and dynamic functions and predicates are collected
in a vocabulary.

The program: A program for an sASM is a basic sequential program in the sense
of ASM theory. Concretely, a basic update rule has the form: f(t1, . . . , tn) := t0
where f is a function name and t0, . . . , tn are terms in the vocabulary. To fire
the basic update rule at a state A, evaluate the terms t0, . . . , tn in A to elements
a0, . . . , an in the base set and then change the interpretation of f in (a1, . . . , an)
to a0.

Update rules r1, . . . , rm can be combined to a new rule par r1 . . . rm end-
par, the semantics of which is this: Fire rules r1, . . . , rm in parallel; if they are
inconsistent then do nothing.

Furthermore, if r1 and r2 are rules and ϕ is a quantifier-free formula in the
vocabulary, then if ϕ then r1 else r2 endif is also a rule. The semantics is
obvious.

Now, an sASM program is just a single rule.

The run and the output: An sASM M that is set to work on a finite stream s
starts in the state where all dynamic functions have the interpretation ⊥, except
for the function in: In the initial state, the function in contains the first element
of the stream s.

The run of M on s is the sequence of states obtained as follows: start from
the initial state and fire (the rule of) M ’s program, in each step interpreting

A Theory of Stream Queries 163

the function in as the next element in s. The sASM halts when the end of
s is reached. The interpretation of in is dynamic but it is controlled by the
environment rather than by the machine; in is an external function.

We define the final output of M on a finite stream s as the stream obtained
by concatenating the interpretations of the output registers in some predefined
order when M has halted, and where ⊥-elements are disregarded.

We now say that an sASM M computes a function K : finStream → finStream
(meant as a kernel for a stream query) if for all finite streams s, the final output
of M on s equals K(s). By KM we denote the function K computed by M .

It is important to note that the final output of an sASM M on a stream
s1 . . . sn+1 can be simply obtained by running M on the input s1 . . . sn first, and
then making one final step upon reading sn+1. Consequently, on any stream s
(finite or infinite), we can compute Repeat(KM)(s) simply by continuously run-
ning M on s, at each step producing the current output. We refer to Repeat(KM)
as the stream query computed by M .

Example 20. Recall Example 1. In the setting where U contains sets of entries,
there could for example be a function defined on U that given a set of entries,
returns the set of sensor identifiers that measured an alarmingly high value.

In the setting where U contains entries directly, there could for example be
a predicate defined on U that checks whether an entry has an alarmingly high
measurement and a function that given an entry, returns the sensor identifier of
the entry. ��

Example 21. Consider the sliding window join between two streams of tuples of
natural numbers over the attributes {A, B} and {C, D}, where the join condi-
tion is B = C. The output tuples have attributes {A, B, D}. The universe U

then contains ⊥, TupleAB, TupleCD, and TupleABD, with TupleAB the set of
tuples over the attributes {A, B}, and similarly for TupleCD and TupleABD. The
function joinB=C : TupleAB × TupleCD → TupleABD checks whether two tuples
join on their B- and C-attributes and returns the joined tuple; the result is ⊥ if
the tuples do not join.

The output of the sliding window join depends on two streams, whereas
streaming ASMs work on a single stream. Moreover, the output depends on
the particular interleaving in which the streams arrive. By choosing an appro-
priate universe U, however, we can represent the two input streams and their
interleaving as a single stream.

Concretely, we extend the universe U with the set TaggedTuple of elements of
the form 〈r:u〉 and 〈s:v〉 with u ∈ TupleAB and v ∈ TupleCD. A tagged tuple
encodes an element and its origin. For example, the stream of tagged tuples

〈r:(1, 2)〉〈s:(2, 3)〉〈s:(3, 4)〉 . . .

is a representation of the interleaving of the tuple (1,2) arriving in the first
stream, followed by the tuples (2,3) and (3,4) arriving in the second stream, and
so on. Furthermore, we add the predicates R and S to the universe U to test
whether an element is of the form 〈r:u〉 or 〈s:v〉, respectively. Finally, we add

164 Y. Gurevich, D. Leinders, and J. Van den Bussche

a function strip : TaggedTuple → TupleAB ∪ TupleCD that removes the tag of a
tagged tuple. Static functions return ⊥ when one of the arguments is ⊥.

Assume for simplicity that the window size is 2. We then equip the sASM
with 4 nullary dynamic functions regR

i , and regS
i for i = 1, 2. The following is

now a program for an sASM computing the sliding window join described above.

par
if R(in) then

par
regR

1 = in
regR

2 = regR
1

out1 = joinB=C(strip(in), strip(regS
1))

out2 = joinB=C(strip(in), strip(regS
2))

endpar
endif
if S(in) then

par
regS

1 = in
regS

2 = regS
1

out1 = joinB=C(strip(regR
1), strip(in))

out2 = joinB=C(strip(regR
2), strip(in))

endpar
endif

endpar ��

8 Bounded-Memory and o(n)-Bitstring sASMs

Due to the extreme generality of the ASM model, one should not expect that
restricting attention to stream queries that are computable by an sASM would
imply any limitation. Indeed, the only restriction that comes from our sASM
model is that at each step in the computation of the stream query, only a con-
stant number of elements can be output. More concretely, since the background
structure of an sASM could, a priori, be anything, we have the following propo-
sition and corollary (which in itself are philosophically entirely uninteresting):

Proposition 22. Let k be a fixed natural number and let K : finStream →
finStream be any kernel function such that the length of K(s), for any finite
stream s, is at most k. Then the stream query Repeat(K) is computable by some
sASM.

Proof (sketch). It is an easy matter for an sASM to compute Repeat(K) if it has
1) a background structure containing a) the set of all finite streams finStream,
b) the append function of sort finStream × U → finStream, c) the function K,
and d) functions element i for i = 1, . . . , k to extract elements out of a finite
stream; and 2) a nullary dynamic function s containing at each step the part of
the stream that has already arrived.

A Theory of Stream Queries 165

At each step, the sASM uses the append function to update the dynamic
function s; it applies K to the stream s; and it uses the extraction functions
element i to update the output registers. ��

Corollary 23. Every SAC query is abstract computable by an sASM.

In order to formulate a relevant complexity limitation on stream queries, we
propose “bounded-memory sASMs”.

Definition 24. A bounded-memory sASM is an sASM with the following re-
strictions: 1) no output register can ever be used as an argument to a function;
2) all dynamic functions are nullary; and 3) non-nullary (static) functions can
only be applied in rules of the form out := t0, with out an output register and t0
a term over the vocabulary.

Example 25. The sASM computing the sliding window join in Example 21 is a
bounded-memory sASM. The obvious sASM for computing the running average
query from Example 3, however, is not bounded-memory (but see later, when
we introduce bitstring sASMs). ��

Every CQL-query where a finite window is applied to the input streams ([2]) is
computable by a bounded-memory sASM. Indeed, let Q be such a CQL-query.
Then, Q = Repeat(KM), where M is the following sASM. For each window of Q
of size n, the sASM M has n dynamic constants. When M receives a new input
element, say with tag 〈r:〉, the sASM simulates the sliding of the window(s) on
input stream r by updating the corresponding dynamic constants accordingly.
In each step, the output is computed in a brute-force way. This technique was
already illustrated in Example 21.

Moreover, every duplicate-eliminating SPJ-query computable in bounded
memory in the sense defined by Arasu et al. is computable by a bounded-memory
sASM [1].

Bounded-memory sASMs also have some limitations: even the very simple
stream query that checks whether two streams intersect, is not computable by
a bounded-memory sASM. Let E be an infinite set of data elements and let
TaggedElement be the set of elements of the form 〈r:u〉 and 〈s:u〉 with u ∈ E.
A stream over TaggedElement then represents the interleaving of two streams
over E (see Example 21). Let U be the set TaggedElement extended with the
boolean values true and false. The query intersect is defined on streams
over U and checks whether a common element has been seen in the interleaved
streams over E. Concretely, the result of intersect on a stream s over U is the
stream s′ such that the n-th element of s′ is true if and only if for some i, j ∈ N0
with i, j < n and for some u ∈ E, we have si = 〈r:u〉 and sj = 〈s:u〉.

Proposition 26. intersect is not computable by a bounded-memory sASM.

Proof. Let M be a bounded-memory sASM such that intersect is equal to
Repeat(KM).

166 Y. Gurevich, D. Leinders, and J. Van den Bussche

Let Ω be the set of predicates of M . Then for each predicate p ∈ Ω of arity
k and for each k-sequence α of elements in {r, s}, define the predicate pα on
E to be true of a tuple (u1, . . . , uk) iff p is true of (〈α1:u1〉, . . . , 〈αk:uk〉). Let
Ω′ := {pα | p ∈ Ω and α ∈ {r, s}k where k = arity(p)}.

Without loss of generality, we assume that E is totally ordered by a predicate
<. Using Ramsey’s theorem, we can find an infinite set V ⊆ E over which the
truth of the predicates in Ω′ on tuples of elements in E only depends on the
way these data elements compare w.r.t. < (details on this can be found, e.g.,
in Libkin’s textbook [13, Section 13.3]). Now choose 2n elements in V , for n
large enough, satisfying v1 < v′1 < · · · < vn < v′n. Let s be the input stream
〈r:v1〉 . . . 〈r:vn〉 and consider the run of M on s. After the step where 〈r:vn〉
is processed there will be at least one element 〈r:v�〉 that M has not stored in
its registers. Then, consider the streams s′ and s′′ of length n + 1 that have s as
a prefix, and with s′n+1 = 〈s:v�〉 and s′′n+1 = 〈s:v′�〉. The runs of M on s′ and
s′′ will be identical to the run of M on s until right after the step where 〈r:vn〉
is processed. In the next step, the machine receives either 〈s:v�〉 or 〈s:v′�〉.
Because v� and v′� have the same relative order with respect to the other v-
elements, each tuple of elements from the set {v1, . . . , v�, . . . , vm} satisfies the
same predicates in Ω′ as the tuple obtained by replacing v� by v′�. By definition
of Ω′, also each tuple of elements from the set {〈r:v1〉, . . . , 〈s:v�〉, . . . , 〈r:vm〉}
satisfies the same predicates in Ω as the tuple obtained by replacing 〈s:v�〉 by
〈s:v′�〉. Therefore, the output of M on s′ will be identical to the output of M
on s′′. As a consequence, Repeat(KM)(s′) and Repeat(KM)(s′′) are equal while
intersect(s′) and intersect(s′′) are different. Thus, M is wrong. ��
This result can also be obtained via a reduction from a result on Finite Cursor Ma-
chines (FCMs) in our earlier work with Grohe, Schweikardt and Tyszkiewicz [8].
An FCM works by moving one-way cursors over a number of input lists using
an internal memory consisting of a finite number of modes, finitely many ele-
ment registers containing input elements, and finitely many registers containing
bitstrings. To manipulate its internal memory, an FCM has a number of func-
tions and predicates, with the restriction that the output of a function is always
a bitstring. It has been shown [8, Theorem 12] that no matter how rich the
background is, an FCM can not check whether two sets intersect using bitstring
registers of size o(n), where n is the size of the input.

The proof we gave here is more direct and therefore provides more insight on
the limitations of bounded memory stream processing. The reduction argument,
however, can easily be generalized to accommodate for bitstring registers of size
o(n). A bitstring sASM is an sASM defined as in Definition 24 with the following
relaxation of restriction 3: non-nullary (static) functions can be used also to
update non-output registers, as long as those functions produce bitstrings. An
o(n)-sASM then is a bitstring sASM such that on each stream s and for each
step n in the run on s, the sASM stores bitstrings of length o(n).

Example 27. We can model a version of the running average query (Example 3)
using o(n)-bitstring sASMs. Indeed, consider streams of natural numbers such
that the value in the n-th position of the stream (for any n) is at most 2polylog(n).

A Theory of Stream Queries 167

Then with a static function from natural numbers to their binary representations,
and the addition and division function on binary numbers, we can compute the
running average with an o(n)-sASM. ��

Proposition 28. The query intersect is not computable by an o(n)-sASM.

Proof. Let M be an o(n)-sASM M working on a stream of tagged elements such
that intersect is equal to Repeat(KM). From M , we can then construct an
o(n)-FCM M ′ working on two lists of elements in E that checks whether they
have a common element. The FCM M ′ has the same number of bitstring registers
as M , and has an element register for every dynamic constant of M . For every
element in an element register, M ′ remembers from which input list the element
was copied, using its internal mode. Furthermore, let Ω be the set of predicates
of M , including the predicates naturally corresponding to M ’s boolean output
functions. Then the set of predicates of M ′ is the set Ω′ as defined in the proof
of Proposition 26. Finally, if F is the set of functions of M , then the set of
functions F ′ of M ′ is similarly constructed from F as Ω′ is constructed from Ω.

Consider the input lists R and S. The FCM M ′ has a single cursor on R and
a single cursor on S. Now, M ′ computes as follows. At each odd step, M ′ moves
its cursor on R to the next element u, updating the (element and bitstring)
registers as M would do when receiving the element 〈r:u〉 from the stream. The
internal mode is changed so that it contains the origin of each element in the
registers. At each even step, M ′ moves its cursor on S to the next element v,
updating the registers as M would do when receiving the element 〈s:v〉 from
the stream. The internal mode is again changed accordingly. M ′ can simulate
this behaviour using the functions in F ′, or the predicates in Ω′ together with
its internal mode. For example, if M applies a predicate p to an element in a
dynamic constant reg — i.e., an element of the form 〈r:u〉 or 〈s:v〉 — the FCM
M ′ would use its internal mode to obtain the origin of the element in the register
corresponding to reg and then apply the right predicate pr or ps to the element
in that register — i.e., to u or v. Once M outputs true, M ′ enters the accept
state and halts. As long as M outputs false, M ′ continues until it has detected
the ends of the input lists. In that case, M ′ enters the reject state and halts.
Note that M ′ can use the predicates corresponding to the boolean functions of
M to obtain the output M produces. Because M works correctly, it will also
work correctly on this particular interleaving. Therefore, M ′ correctly checks
whether R and S intersect. Hence the contradiction. ��

We conclude by pointing out that on finite streams, finite cursor machines are
indeed more powerful than bounded-memory sASMs: Consider the query sort-

intersect that given two finite streams A and B, checks if they are both
sorted and if so, outputs their intersection; if the inputs are not sorted, sort-

intersect, outputs false. Then,

Proposition 29. The query sort-intersect is computable by an FCM but
not by a bounded-memory sASM.

168 Y. Gurevich, D. Leinders, and J. Van den Bussche

Proof. An FCM would compute the query sort-intersect using one cursor
on each list to check if they are sorted and another cursor on each list to do
a synchronized scan of both list to search for common elements. Inspection of
the proof of Proposition 26 reveals that a bounded-memory sASM can not even
check whether two finite sorted streams intersect. ��

9 Conclusion

An interesting open problem is to relax the definition of bounded-memory sASM
in other ways than with using o(n)-length bitstrings.

References

1. Arasu, A., Babcock, B., Babu, S., McAlister, J., Widom, J.: Characterizing memory
requirements for queries over continuous data streams. ACM TODS 29(1), 162–194
(2004), Includes an electronic appendix
http://doi.acm.org/10.1145/974750.974756

2. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. The VLDB Journal 15(2), 121–142 (2006)

3. Arasu, A., Widom, J.: A denotational semantics for continuous queries over streams
and relations. SIGMOD Record 33(3), 6–11 (2004)

4. Ayres, F., Mendelson, E.: Schaum’s Outline of Calculus. McGraw-Hill, New York
(1999)

5. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: PODS 2002, pp. 1–16 (2002)

6. Balakrishan, H., Balazinska, M., Carney, D., Çetintemel, U., Cherniack, M., Con-
vey, C., Galvez, E.F., Salz, J., Stonebraker, M., Tatbul, N., Tibbetts, R., Zdonik,
S.B.: Retrospective on Aurora. The VLDB Journal 13(4), 370–383 (2004)

7. Golab, L., Özsu, M.T.: Processing sliding window multi-joins in continuous queries
over data streams. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) Databases,
Information Systems, and Peer-to-Peer Computing. LNCS, vol. 2944, pp. 500–511.
Springer, Heidelberg (2004)

8. Grohe, M., Gurevich, Y., Leinders, D., Schweikardt, N., Tyszkiewicz, J., Van den
Bussche, J.: Database query processing using finite cursor machines. In: Schwentick,
T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 284–298. Springer, Heidelberg
(2006)

9. Gurevich, Y.: Evolving algebra 1993: Lipari guide. In: Börger, E. (ed.) Specification
and Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)

10. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM TOCL 1(1), 77–111 (2000)

11. Hocking, J.G., Young, G.S.: Topology. Dover Publications, Mineola, NY (1988)
12. Law, Y.-N., Wang, H., Zaniolo, C.: Query languages and data models for database

sequences and data streams. In: VLDB 2004, pp. 492–503 (2004)
13. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)
14. Madden, S.R., Franklin,M.J., Hellerstein, J.M., Hong,W.: TinyDB:Anacquisitional

query processing system for sensor networks. ACM TODS 30(1), 122–173 (2005)
15. Terry, D., Goldberg, D., Nichols, D., Oki, B.: Continuous queries over append-only

databases. In: SIGMOD 1992, pp. 321–330 (1992)
16. Weihrauch, K.: Computable Analysis: An Introduction. Springer, Heidelberg (2000)

http://doi.acm.org/10.1145/974750.974756

	A Theory of Stream Queries
	Introduction
	Abstract Computability
	Continuity
	The Finite Case
	Time
	Complexity Limitations
	Streaming ASMs
	Bounded-Memory and $o(n)$-Bitstring sASMs
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

