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The need to manage diverse information sources has triggered the rise of very loosely structured
data models, known as dataspace models. Such information management systems must allow
querying in simple ways, mostly by a form of searching. Motivated by these developments, we
propose a theory of search queries in a general model of dataspaces. In this model, a dataspace
is a collection of data objects, where each data object is a collection of data items. Basic search
queries are expressed using filters on data items, following the basic model of Boolean search in
information retrieval. We characterize semantically the class of queries that can be expressed by
searching. We apply our theory to classical relational databases, where we connect search queries
to the known class of fully generic queries, and to dataspaces where data items are formed by
attribute-value pairs. We also extend our theory to a more powerful, associative form of searching,
where one can ask for objects that are similar to objects satisfying given search conditions. Such
associative search queries are shown to correspond to a very limited kind of joins. We show that the
basic search language extended with associative search can exactly define the queries definable in
a restricted fragment of the semijoin algebra working on an explicit relational representation of
the dataspace.
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1. INTRODUCTION

One can say that querying by a form of searching has become the norm. Indeed,
in most current information systems such as Web search engines, e-commerce
sites, or desktop search systems, as well as in classical information retrieval
systems such as library catalogs or document repositories, users query the
database by means of a search interface. Searching is expressed by means of
keywords that can be combined with Boolean operators. Such a basic search
facility is much weaker than the standard database query languages, where
select–project–join queries are considered the minimum, and full-fledged first-
order logic is considered the norm (cf. Codd’s relational algebra and calculus).
Contemporary languages such as SQL/PSM or XQuery are even computation-
ally complete.

Database queries are a major theme of database theory [Abiteboul et al.
1995]. In general, queries are generic mappings from databases to relations,
where “generic” refers to invariance under isomorphisms [Chandra and Harel
1980; Aho and Ullman 1979]. Many classes of database queries have been iden-
tified and characterized in terms of semantic properties; expressibility in var-
ious query languages; or computability under various complexity limitations.
Since searching is such a simple, natural, and important form of querying, it
appears that search queries deserve to have their own chapter in the theory
of database queries. Our goal in this article is to propose a first draft of such
a chapter. Apart from the foundational motivation, our work is further moti-
vated by two important trends in data management research: dataspaces and
usability.

Dataspaces [Halevy et al. 2006; Dong and Halevy 2007; Dittrich and
Vaz Salles 2006] are a new type of databases characterized by a very loosely
structured data model and geared towards the management of data coming
from a diverse set of sources. Dataspaces are typically queried by a form of
searching. In essence, the data in a dataspace is modeled as a collection of ob-
jects, where each object is a collection of attribute-value pairs. Dataspaces are
queried by searching for conditions on attributes or values, or by following links
between objects. Relationally complete querying of dataspace-like databases
was studied earlierin the context of models for data integration [Jain et al.
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1995]. Recent work on data processing for cloud computing has also focused on
dataspace-like databases (e.g., DeCandia et al. [2007] and Olston et al. [2008]).

Improving the usability of database systems has been an issue pretty much
since the beginning of database research, as witnessed for example, by the past
research on universal relation interfaces (surveyed by Ullman [1989, Chap-
ter 17]). Recently, Jagadish et al. [2007] have revived our interest in this topic;
he argues, among other things, that queries involving explicit joins or sub-
queries are too cumbersome to express, and stimulates us to ask how far we
can get with simpler forms of querying such as searching, or with more implicit
or automatic ways of joining information.

So, in a nutshell, in this article, we try to formally understand the question
of how much database querying can be done using a basic search language,
possibly extended with a simple facility for following links between objects.

We should also clarify what we do not do in this article. We do not investigate
how searching can be implemented efficiently. Rather, we focus on expressive
power. Also, because of this focus, we ignore other important issues that have
been investigated in research on keyword search in relational, tree-structured
(XML), and semistructured graph databases [Golenberg et al. 2008; Qin
et al. 2009; we give just two recent references]. The two main such issues
are automatically finding connections among objects in the database that con-
tain the given keywords (which is a nice approach to the usability question),
and ranking the results of a keyword search.

Concretely, the contributions of this article can be summarized as follows.

(1) We define a general formal model of dataspaces, where a dataspace is a
collection of data objects, and where an object is a collection of data items.
On these data items, we assume a number of abstract filter predicates to be
defined. These filters naturally serve as atomic search conditions: searching
a dataspace with a filter returns all objects containing an item satisfying
the filter. We obtain a basic search language by combining atomic searches
using the Boolean set operators union, intersection, and difference.

(2) Search queries are defined in general as functions on dataspaces that map
a dataspace to one of its subsets. The question then arises of exactly which
such mappings are definable in the basic search language. This question
turns out to be naturally answered by requiring the search queries to be
invariant under a natural indistinguishability relation on objects. The con-
cept of genericity (invariance) has always been a central theme in the
development of the theory of database queries [Abiteboul et al. 1995]; we
have tried here to get at the right genericity concept for search queries.

(3) We apply this semantic characterization to the case of classical database
relations. A relation can be viewed as a dataspace by viewing the tuples
as sets of attribute-value pairs. When the classical selection conditions “at-
tribute equals constant” are used as filters on such attribute-value pairs,
we obtain as basic search queries precisely the class of search queries
that are “fully generic” in the sense of Beeri et al. [1996, 1997]. (We
hasten to add that these authors looked at full genericity of queries in
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a complex-object setting much richer than mere search queries on flat
relations.)

(4) We extend the basic model to allow for so-called associative search, where
one can search not just for all objects satisfying some search query, but
also for all objects that are somehow linked to those objects. This extension
amounts to adding a link operator to the basic search language, much in
the spirit of modal logic [Blackburn et al. 2001, 2007]. Associative search
is indeed a feature of most dataspace and keyword search query languages
proposed in the literature [Halevy et al. 2006; Dong and Halevy 2007;
Dittrich and Vaz Salles 2006; Golenberg et al. 2008]. Actually, in these pro-
posals, links between objects are often assumed to be found automatically
by the system. Since in this article we are interested in a detailed analysis
of expressive power, we focus on the case where the linking conditions are
explicitly specified in the query.

(5) A question we find interesting is how search query languages relate to
standard database query languages. Those languages remain relevant in
the search and dataspace setting. For example, SPARQL [W3C 2008], the
standard language to query RDF graphs [W3C 2004], is closely related to
database queries on ternary relations [Fletcher 2008; Gutierrez et al. 2004;
Pérez et al. 2009]; RDF graphs can be viewed as a dataspace model.

Under the natural assumption that linking between two objects is done
in terms of a set of similarity relations among the items in these objects, we
can indeed relate associative search to standard database query languages.
Specifically, we observe that associative search queries are definable in
the semijoin algebra: the version of the relational algebra where the join
operator is replaced by the semijoin [Leinders et al. 2005; Leinders and
Van den Bussche 2007; Ross and Janevski 2005]. Here, the semijoin algebra
works on the natural representation of a dataspace as a binary relation;
abstract filters are used as selection conditions, and abstract similarity
predicates are used as join conditions.

Conversely however, not every semijoin query is an associative search
query. We actually identify three kinds of constructions that are definable in
the semijoin algebra but not in our associative search language, and prove
that the fragment of the semijoin algebra in which these three constructions
are disallowed fully characterizes our associative search queries.

(6) Finally, we show that our general abstract theory is workable by apply-
ing it to the most common concrete dataspace setting, where data items
are attribute-value pairs. Unlike the application to classical relations men-
tioned earlier, here there is no fixed schema and objects can have multiple
values for the same attribute. We consider a natural repertoire of filters
that can test if the attribute and the value, equals, or is different from, a
finite number of possibilities. In this setting, the semantic characterization
of basic search queries can be rephrased in a very intuitive manner, as
we will show. We will also instantiate the semijoin algebra characteriza-
tion of associative search queries to the attribute-value setting. Associative
search queries over attribute-value dataspaces are thus characterized as
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Fig. 1. (a) An example document space, and (b) an example attribute-value space.

the queries expressible in a simple and attractive fragment of the semijoin
algebra; this time, dataspaces are represented by ternary relations with
schema (Oid, Att, Val), selection conditions are constant equalities (on at-
tributes as well as on values; remember that there is no dataspace schema),
and all semijoins are simple equijoins.

The current article extends earlier work on this topic, including nontrivial
proofs of results, applications of the theory, and further discussion [Fletcher
et al. 2009].

This article is organized as follows. Section 2 develops the general theory of
search queries on the model of abstract dataspaces, both in terms of Boolean
search queries and associative search queries. Section 3 presents the appli-
cation to classical database relations. Section 4 presents the application to
attribute-value dataspaces. We finish with a discussion in Section 5.

2. A THEORY OF SEARCH QUERIES

In this section we propose a theory of search queries in a general model of
dataspaces. In this model, a dataspace is a collection of data objects. Each data
object is a collection of data elements called items, drawn from a universe of
items I. Although we will keep I abstract in this section in order to obtain a
generally applicable theory, a rich set of well-known, practical data models can
be obtained by picking concrete interpretations for I. For instance:

— Items could be words over some alphabet. Objects then correspond to doc-
uments in the classical Boolean model of information retrieval [Manning
et al. 2008, chapter 1], and dataspaces correspond to collections of such
documents. Figure 1 illustrates such a dataspace, consisting of documents
concerning events in St. Petersburg.

— Items could be pairs (a, v) of attributes a and values v. Objects, being finite
sets of such pairs, then intuitively describe the attributes of a real-world
entity. (Note that there can be multiple values for the same attribute.) A
dataspace is just a collection of such descriptions. Figure 1, for example,
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depicts an attribute-value dataspace describing researchers, drinks, and
papers.

— Staying with attribute-value pairs, we could consider those dataspaces whose
objects contain only attributes from a fixed relation schema, and contain a
single value for each such attribute. Since such objects correspond to tradi-
tional relational tuples, such dataspaces, having these tuples as objects, are
classical database relations.

Definition 1 (Dataspaces). Formally, let I be a set of data elements called
items. An object over I (by short: I-object) is a finite, nonempty set of items. A
dataspace over I (by short: I-dataspace) is a finite set of I-objects.

Throughout the remainder of this section we fix I arbitrarily and simply
talk about objects and dataspaces instead of I-objects and I-dataspaces, re-
spectively. For ease of exposition, however, we will illustrate our definitions
and results in the situation where I is the set of all words, as in classical infor-
mation retrieval. The other concrete situations shown here, where I is a set of
attribute-value pairs, are studied in greater depth in Sections 3 and 4.

2.1 Boolean Search

As a first basic language to express search queries on dataspaces, we consider
the Boolean Search Language BSL. Similar to the Boolean information retrieval
setting, searches in BSL are formed by combining atomic search conditions
(keywords) using the set operators union, intersection, and difference. First,
let us make the notion of a keyword precise.

Definition 2 (Keywords). For our purposes, a keyword is defined semanti-
cally as a subset k ⊆ I. An item i is said to match k if it is an element i ∈ k. An
object o satisfies k, denoted o |= k, if it contains an item that matches k, that is,
if o ∩ k is nonempty.

Keywords naturally serve as atomic search conditions: searching a dataspace
with a keyword returns all objects that satisfy the keyword. For example, let
contains i denote the keyword that consists of all items that contain i (e.g., as a
substring). Searching by contains ICDT then returns all objects in the dataspace
that contain an item in which ICDT occurs as a substring.

In what follows, we write K for the set of all keywords. Two kinds of keywords
deserve special attention:

Definition 3 (Wildcard and literal keywords). The universe I itself is the
keyword that matches all items. We refer to it as the wildcard in what follows.
To draw attention to the fact that it is used as a keyword rather than the
universe of all items, we will denote it by � instead of I.

For every item i, the singleton keyword {i} is called a literal keyword. We
often abuse notation and omit the set braces from these keywords, writing i
instead of {i}.

Equipped with the atomic search conditions, we are ready to formally define
the Boolean Search Language BSL.
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Definition 4. The expressions of BSL are given by the grammar:

e ::= k | e and e | e or e | e except e,

where k ranges over the keywords in K. Semantically, an expression e can be
applied to a dataspace D, resulting in a subset e(D) of D defined as follows.

k(D) := {o ∈ D | o |= k}
(e1 and e2)(D) := e1(D) ∩ e2(D)

(e1 or e2)(D) := e1(D) ∪ e2(D)

(e1 except e2)(D) := e1(D) − e2(D).

Note that the language is a bit redundant, as e1 and e2 is equivalent to
e1 except (e1 except e2).

It is important to appreciate the existential nature of these semantics. Thus,
the expression k1 except k2 does not return all objects that contain an item that
matches k1 but not k2; rather, it returns all objects that contain an item that
matches k1, but do not contain an item that matches k2.

Example 5. To illustrate the semantics, consider the setting where items
are words. Then the expression:

e1 := {weather} and {forecast} and {St. Petersburg},
retrieves all documents in which the words weather, forecast, and St. Petersburg
all occur. By our convention that we identify items i with the singleton keyword
{i}, which matches i only, we will simply write this expression as:

weather and forecast and St. Petersburg,

in what follows. As another example, suppose that, for each item i, similar to i
is a keyword that matches all items similar to i according to some notion of
similarity. Then the expression:

e2 := vodka except (similar to whiskey),

retrieves all documents in which the drink vodka occurs, but no drink similar
to whiskey occurs. In particular, on the document space in Figure 1, e1 and e2

return {o4} and {o1}, respectively.

Of course, in real-life situations, one rarely has all keywords available to
search with. For that reason, we denote by BSL(K) the fragment of BSL ex-
pressions that use only keywords in K ⊆ K. Thus, e1 in Example 5 is in
BSL({{weather}, {forecast}, {St. Petersburg}}), but e2 is not.

As just defined, every BSL expression defines a search query:

Definition 6 (Search Query). A search query is a mapping q from datas-
paces to dataspaces such that q(D) ⊆ D for each dataspace D. We say that
a search query is definable in BSL if there exists an expression e such that
e(D) = q(D) for every D.

Of course not all search queries are definable in BSL. Which ones are? We
can answer this question by identifying three typical properties of BSL queries:
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additivity, K-safety, and K-distinguishing. We define these three properties
next.

Definition 7 (Additivity, K-safety, K-distinguishing). Let q be a search
query and let K ⊆ K be a set of keywords.

— We say that q is additive if:

q(D) =
⋃
o∈D

q({o}),

for any dataspace D.
— We say that q is K-safe if for any dataspace D and any o ∈ q(D), we have

that o |= k for at least one k ∈ K.
— Two objects o1 and o2 are called K-equivalent if for all k ∈ K we have o1 |= k if

and only if o2 |= k. We denote this by o1 �K o2. (Clearly, �K is an equivalence
relation.) We then say that q is K-distinguishing if for any two dataspaces
D1 and D2 and objects o1 ∈ D1 and o2 ∈ D2 that are K-equivalent, we have
o1 ∈ q(D1) if and only if o2 ∈ q(D2).

These three properties represent three distinctive features of search queries.
Additivity simply states that the query can be processed one object at a time.
K-safety states that we cannot retrieve arbitrary objects from the dataspace,
but only objects that satisfy at least one of the specified keywords. This is
also the case in all real-life search engines and information retrieval systems.
Finally, K-distinguishing naturally states that the query can only distinguish
between objects based on their satisfaction of specified keywords.

As a matter of fact, additivity already follows from K-distinguishing, since
the latter property implies o ∈ q(D) if and only if o ∈ q({o}), which readily
implies additivity. We stated the property of additivity separately because we
will need it later independently of K-distinguishing.

We establish the following semantic characterization.

THEOREM 8. Let K ⊆ K be a set of keywords. The following are equivalent
for any search query q:

(1) q is definable in BSL(K);
(2) q is L-safe and L-distinguishing, for some finite set L ⊆ K.

PROOF. (1 → 2) Suppose that e ∈ BSL(K) defines q. Take L to be the finite
set of keywords mentioned in e. The properties of L-safety and L-distinguishing
are then readily verified by structural induction on e (details omitted).

(2 → 1) Suppose that search query q is L-safe and L-distinguishing with
L ⊆ K finite. First observe that �L has only a finite number of equivalence
classes. Indeed, since two objects are L-equivalent only if they satisfy the same
keywords in L, we can find for each equivalence class C, a subset of keywords
LC ⊆ L such that:

C = {o | o |= k for all k ∈ LC and o 	|= k for all k ∈ L − LC}.
Since there are only a finite number of subsets LC ⊆ L, there can only be a
finite number of equivalence classes.
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Then let C1, . . . , Cs be those equivalence classes of �L that contain an object
o with o ∈ q({o}). We say that these equivalence classes satisfy q. Note that
since q is L-distinguishing, for each object o′ we have o′ ∈ q({o′}) if and only if
o′ ∈ C1 ∪ · · · ∪ Cs.

Then observe that each equivalence class C ∈ {C1, . . . , Cs} is definable in
BSL(L) in the sense that we have an expression eC such that o ∈ C if and only
if, o ∈ eC({o}). Indeed, pick o ∈ C arbitrarily, let {k1, . . . , km} = LC be the finite
set of all keywords in L that o satisfies, and let {l1, . . . , ln} = L− LC be the finite
set of all keywords in L that o does not satisfy. Let:

eC := (k1 and . . . and km) except (l1 or . . . or lm).

Clearly, for any object o′ we have o′ ∈ eC({o′}) if and only if o′ �L o (and hence
o′ ∈ C). Note that eC is a valid expression only if m ≥ 1. However, since q is
L-safe and C satisfies q, we know that the objects in C must satisfy at least one
keyword in L. Thus we are assured that m ≥ 1.

Then q is defined in BSL(L) by e := eC1 or . . . or eCs . Indeed, by the only-if
direction we know that every expression in BSL(L) is L-distinguishing, and
thus additive. In particular, e is additive. Then observe that for any dataspace
D and any o ∈ D we have:

o ∈ (eC1 or . . . or eCs )(D)

⇔ o ∈ (eC1 or . . . or eCs )({o}) (since e is additive)

⇔ o ∈ eC1 ({o}) ∪ · · · ∪ eCs ({o})
⇔ o ∈ C1 ∪ · · · ∪ Cs (by construction of eCi )

⇔ o ∈ q({o})
⇔ o ∈ q(D) (since q is L-distinguishing, and hence additive).

As such, e defines q.

Note that the finiteness of L is crucial in the proof.
We point out that in the presence of the wildcard keyword, the issue of

L-safety becomes moot:

COROLLARY 9. When K ⊆ K includes the wildcard keyword �, a search query
is definable in BSL(K) if and only if it is L-distinguishing for some finite L ⊆ K.

PROOF. The only-if direction follows directly from Theorem 8. For if-
direction, first observe that o �L o′ if and only if, o �L∪{�} o′. Hence, since q
is L-distinguishing, it is also (L ∪ {�})-distinguishing. Moreover, since all ob-
jects satisfy �, every query is (L ∪ {�})-safe. Therefore, q is both (L ∪ {�})-safe
and (L ∪ {�})-distinguishing, and hence definable in BSL(K) by Theorem 8.

The following example gives two illustrations of how one can show that
certain queries are not definable in BSL.

Example 10. One may wonder if negations of keywords can be expressed:
can we express the query “¬k”,

(¬k)(D) = {o ∈ D | ∃i ∈ o : i /∈ k},
ACM Transactions on Database Systems, Vol. 35, No. 4, Article 28, Publication date: November 2010.
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which retrieves all objects containing an item that does not match some fixed
keyword k? The answer in general is no. In proof, suppose that k is a keyword
with at least one item i ∈ k and at least one item j 	∈ k. Then the query ¬k is
not L-distinguishing for any L ⊆ {k, �}. Indeed, consider the following objects:

i
o1

i
j

o2

Then o1 �L o2 for any such L, yet o2 satisfies the query whereas o1 does not.
Hence, ¬k is not definable in BSL(k, �).

Of course, one can add “negated keywords” (complements of keywords rela-
tive to I) directly to the set of allowed keywords to express such queries. One
may then wonder whether that is enough to already allow all Boolean com-
binations of keywords to be expressed. For example, can we now retrieve all
objects containing an item that matches neither k1 nor k2? The answer is still
no. In proof, suppose that k1 and k2 are two keywords and i1, i2, j0, and j are
items such that i1 matches k1 but not k2; i2 matches k2 but not k1; j0 matches
neither k1 nor k2; and j matches both k1 and k2. Let ¬k1 and ¬k2 be the negated
keywords of k1 and k2, respectively. (¬k1 := I − k1, and similarly for ¬k2.) Then
the query “¬k1 ∧ ¬k2” is not L-distinguishing for any L ⊆ {k1, k2,¬k1,¬k2, �}
and is thus not definable in BSL(k1, k2,¬k1,¬k2, �). Indeed, consider the objects:

i1

i2

o3

j0
j

o4

Then o3 �L o4 for any such L, but o4 satisfies the query, whereas o3 does not.

We conclude this section by pointing out that Theorem 8 continues to hold
if one is only interested in definability of q with respect to a particular class of
dataspaces, in the following sense.

Definition 11. Let D be a subclass of the class of all dataspaces and let
K ⊆ K be a set of keywords.

— A search query q is definable on D in BSL if there exists an expression e such
that e(D) = q(D) for every D ∈ D.

— A search query q is K-safe on D if for any D ∈ D and any o ∈ q(D), we have
o |= k for at least on k ∈ K.

— A search query q is K-distinguishing on D if for any two dataspaces D1 ∈ D
and D2 ∈ D and any two objects o1 ∈ D1 and o2 ∈ D2 that are K-equivalent,
we have o1 ∈ q(D1) if and only if o2 ∈ q(D2).

COROLLARY 12. Let K ⊆ K be a set of keywords. The following are equivalent
for any search query q and any class of dataspaces D.

(1) q is definable on D in BSL(K).
(2) q is L-safe and L-distinguishing on D, for some finite set L ⊆ K.

As in Corollary 9, the condition that q be L-safe can be dropped when � ∈ K.
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PROOF. (1 → 2) Suppose that e ∈ BSL(K) defines q on D. Since e ∈
BSL(K), we know by Theorem 8 that the query defined by e is L-safe and
L-distinguishing on the class of all dataspaces, for some finite L ⊆ K. This
implies in particular that e is L-safe and L-distinguishing on D. Hence, since q
coincides with e on D, so is q.

(2 → 1) Suppose that search query q is L-safe and L-distinguishing on D,
with L ⊆ K finite. Define the search query p on the class of all dataspaces as
follows.

p(D) = {o ∈ D | there exists D′ ∈ D and o′ ∈ q(D′) with o �L o′}.
This search query is L-safe on the class of all dataspaces. Indeed, if o ∈ p(D)
then there exists some D′ ∈ D and some o′ ∈ q(D′) with o �L o′. Since q is
L-safe on D we know that there exists k ∈ L with o′ |= k. Then, since o �L o′,
also o |= k.

The query is also L-distinguishing on the class of all dataspaces: let D1

and D2 be arbitrary dataspaces, and suppose that o1 ∈ D1 and o2 ∈ D2 are
L-equivalent. Then:

o1 ∈ p(D1) ⇔ there exists D′ ∈ D and o′ ∈ q(D′) with o1 �L o′

⇔ there exists D′ ∈ D and o′ ∈ q(D′) with o2 �L o′

⇔ o2 ∈ p(D2).

By Theorem 8, p is definable in BSL(L) on the class of all dataspaces. The
corollary then follows since p(D) = q(D) for all D ∈ D. Indeed, if D ∈ D and
o ∈ q(D) then also o ∈ p(D) by definition of p. Conversely, if D ∈ D and o ∈ p(D)
then there exists D′ ∈ D and o′ ∈ q(D′) with o �L o′. Since q is L-distinguishing
on D, also o ∈ q(D).

2.2 Associative Search

Since BSL queries are additive, BSL cannot define queries that relate objects to
other objects. In other words, BSL cannot do joins. For example, in the informa-
tion retrieval setting (where items are words) the search query:

“retrieve all objects that share a word with an object in which
ICDT 2009 occurs”

is not additive, and therefore not definable in BSL. In dataspace systems, how-
ever, we often want to be able to retrieve not just all objects that satisfy some
search query, but also all objects that are related to those objects [Dong and
Halevy 2007; Dittrich and Vaz Salles 2006]. To this end, we extend our theory
as follows.

Definition 13 (Link condition). Let O denote the set of all objects. A link
condition is a binary relationship λ ⊆ O × O on objects. We write λ(o, o′) to
denote (o, o′) ∈ λ, and write L for the set of all link conditions.

We then define the associative search language ASL as an extension of the
basic search language BSL with an operator for retrieving related objects.
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Definition 14. The expressions of ASL are given by the grammar

e ::= k | e and e | e or e | e except e | link〈λ〉 e,

where λ ranges over L. The semantics of the new construct is given by:

(link〈λ〉 e)(D) := {o ∈ D | ∃o′ ∈ e(D) : λ(o, o′)}.

Example 15. As a simple example on document spaces, let shares be the
link condition that links o to o′ if and only if o and o′ share a common word. Then
the expression link〈shares〉 ICDT 2009 returns all documents that share a word
with a document in which ICDT 2009 occurs. In particular, on the dataspace in
Figure 1, it returns {o3, o4}.

As another example, consider a document space of scientific biographies,
and let advisor be the link condition that links o to o′ if and only if o
is the PhD advisor of o′. Then the expression link〈advisor〉(link〈advisor〉 St.
Petersburg State University) returns the biographies of scientists who are the
grand-advisors of scientists associated with St. Petersburg State University
(who are the advisor of the advisor of a scientist whose biography mentions the
university).

Of course, in real-life situations, we do not have all possible link conditions
available to search with. For that reason, we are primarily interested in the
queries definable in ASL(K, L), where ASL(K, L) denotes the fragment of ASL
expressions that use only keywords in K ⊆ K and link conditions in L ⊆ L.

It turns out that there is a connection between ASL and modal logics (see
Blackburn et al. [2001] for a recent survey of modal logics). Indeed, ASL is a
modal logic, in the sense that objects are “possible worlds/states”, link con-
ditions induce “transitions” between these states, and ASL is a navigational
language for reasoning over such transition systems. We can make this con-
nection precise by defining a bisimulation notion appropriate for ASL.

Definition 16 (Bisimilarity). A pointed dataspace is a pair (D, o) with D a
dataspace and o an object in D. Let K ⊆ K and L ⊆ L be sets of keywords
and link conditions, respectively. Two pointed dataspaces (D, o) and (D′, o′) are
n-bisimilar, or n-bisimulation equivalent, under K and L, denoted (D, o) �K,L

n
(D′, o′), if o �K o′ and in addition the following conditions hold for n > 0:

Forth For any λ ∈ L, if λ(o, p) for some p ∈ D, then there is some p′ ∈ D′ such
that λ(o′, p′) and (D, p) �K,L

n−1 (D′, p′).
Back For any λ ∈ L, if λ(o′, p′) for some p′ ∈ D′, then there is some p ∈ D such

that λ(o, p) and (D, p) �K,L
n−1 (D′, p′).

Observe in particular that for the base case n = 0, (D, o) �K,L
0 (D′, o′) if

o �K o′.

Example 17. For example, if K = {�, a}; L = {shares} (with shares as in
Example 15); and D and D′ are as follows:
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a
b
c

o
b
c

p

︸ ︷︷ ︸
D

a
d

o′
d
e
f

p′

︸ ︷︷ ︸
D′

then (D, o) �K,L
n (D′, o′) and (D, p) �K,L

n (D′, p′) for any n. Indeed, clearly
o �K o′ and p �K p′. To verify the Forth property, shares links o in D only to o
and p by which we can respond in D′ by o′ and p′ respectively. Similarly, shares
links p only to p and o, by which we can respond in D′ by p′ and o′ respectively.
The Back property is verified similarly. In contrast, (D, o) 	�K,L

n (D′, p′) for any
n since o 	�K p′.

Bisimilarity characterizations play a fundamental role in the study of the
expressivity of modal logics, analogous to the classical Ehrenfeucht-Fraı̈ssé
characterizations employed in the study of the expressivity of first order logic
[Goranko and Otto 2007]. Towards delimiting the expressive power of ASL, we
next introduce a notion of bisimulation-invariance.

Definition 18. Let D be a class of dataspaces. A query q is �K,L
n -invariant

on D if for any (D, o) �K,L
n (D′, o′) with D, D′ ∈ D we have o ∈ q(D) ⇔ o′ ∈ q(D′).

A query is �K,L
n -invariant if it is �K,L

n -invariant on the entire class of all
dataspaces.

If we define the nesting depth of link operators in an expression e, denoted
by depth(e), as follows:

depth(k) := 0

depth(e1 and e2) := max(depth(e1), depth(e2))

depth(e1 or e2) := max(depth(e1), depth(e2))

depth(e1 except e2) := max(depth(e1), depth(e2))

depth(link〈λ〉 e) := 1 + depth(e)

then adapting to our setting the known expressivity characterization from the
model theory of modal logic [Goranko and Otto 2007, Theorem 32], we obtain
the following helpful lemma. We give the details of our proof adaptation, as the
tools developed therein are of independent interest.

LEMMA 19. Let K be a finite nonempty set of keywords and let L be a finite
nonempty set of link conditions. Then the following are equivalent for any search
query q and any class D of dataspaces:

(1) q is definable on D in ASL(K ∪ {�}, L) by an expression e with nesting depth
of link operators at most n;

(2) q is �K,L
n -invariant on D.

PROOF. (1 → 2) Let e be an arbitrary expression in ASL(K ∪ {�}, L) and let
n = depth(e) be the nesting depth of link constructs in e. It is readily verified by

ACM Transactions on Database Systems, Vol. 35, No. 4, Article 28, Publication date: November 2010.



28:14 • G. H. L. Fletcher et al.

induction on e that the query defined by e is �K,L
n -invariant on the class of all

dataspaces, and therefore also �K,L
n -invariant on any subclass D.

(2 → 1) The crucial step in proving the converse direction from (2) to (1) is
the construction, for every pointed dataspace (D, o), of a so-called character-
istic expression en

(D,o) in ASL(K ∪ {�}, L), with the property that for all pointed
dataspaces (D′, o′),

o′ ∈ en
(D,o)(D

′) ⇔ (D′, o′) �K,L
n (D, o). (1)

This construction proceeds by induction on n, for all (D, o) simultaneously.

— When n = 0, en
(D,o) is the BSL(K ∪ {�}) expression:

e0
(D,o) := (k and . . . and k′) except (l or . . . or l′),

where {k, . . . , k′} are all keywords in K satisfied by o, and {l, . . . , l′} are all
keywords in K not satisfied by o. If o does not satisfy any keyword in K then
e0

(D,o) is � except (l or . . . or l′).
— Inductively, let link[λ]e abbreviate the expression � except link〈λ〉(� except e)

which returns all objects that are only linked by λ to those objects returned
by e. Then en+1

(D,o) is the ASL(K ∪{�}, L) expression with link nesting depth n+1
given by:

en+1
(D,o) := e0

(D,o) and
∧
λ∈L

( ∧
p∈D

λ(o,p)

link〈λ〉 en
(D,p)

︸ ︷︷ ︸
forth

∧ link[λ]
∨
p∈D

λ(o,p)

en
(D,p)

︸ ︷︷ ︸
back

)
.

Intuitively, the subexpression e0
(D,o) verifies that o′ �K o. The subexpression

labeled “forth” verifies that for every λ ∈ L and every p ∈ D with λ(o, p) for
some p ∈ D there exists p′ ∈ D′ such that λ(o′, p′) and (D′, p′) �K,L

n (D, p).
The subexpression labeled “back” verifies that o′ does not have p′ ∈ D′ with
λ(o′, p′) for which we cannot find a corresponding p ∈ D with λ(o, p) and
(D′, p′) �K,L

n (D, p).

As such, if {(D1, o1), (D2, o2), . . . } is the set of all pointed dataspaces (D, o)
with D ∈ D and o ∈ q(D), q is defined on D by the possibly infinite expression:

en
(D1,o1) or en

(D2,o2) or . . .

Since K and L are finite, however, there are only a finite number of character-
istic expressions en

(D,o) up to logical equivalence. Therefore, this expression can
always be made finite, as desired.

Like Theorem 8 for BSL, Lemma 19 provides a tool to show certain queries are
(un)definable in ASL(K, L) for various K and L—a tool that we will repeatedly
employ in the following sections.

2.3 On Searching by Similarity Link Conditions and the Semijoin Algebra

In their full generality, link conditions, as binary relations, can be arbitrarily
complex, and need not adhere to any reasonable notion of associative search.
Consider, for instance, the link condition subset := {(o, o′) | o ⊆ o′}. Then
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link〈subset〉 ICDT 2009 returns all objects o for which there exists some o′ that
mentions ICDT 2009 and o ⊆ o′. Such link conditions are known as a set joins
in database theory [Leinders and Van den Bussche 2007; Sarawagi and Kirpal
2004], and have more to do with full-blown querying than searching.

Moreover, a flexible search query language should allow the link conditions
to be expressed within the language itself.

For these reasons we next introduce a restricted set of link conditions, the
simlinks, which intuitively link two objects o and o′ by, (1) searching within o
using a keyword k; (2) searching within o′ using a keyword l; and (3) comparing
the two search results and requiring that they contain a pair of similar items.

Definition 20. A similarity relation (or simrel for short) is a binary relation
∼ on items, ∼⊆ I × I. Let k and l be keywords and let ∼ be a simrel. Then the
expression k ∼ l is called a simlink and can be used as a link condition with
the following semantics:

k ∼ l := {(o, o′) ∈ O × O | ∃i ∈ o ∩ k : ∃ j ∈ o′ ∩ l : i ∼ j}.
Henceforth we write S for the set of all simrels.

Example 21. For a simple example on document spaces consider the simrel
soviet between words such that w1 soviet w2 if w1 is a location name (e.g., city,
street, or building names) from the Soviet era, and w2 is the corresponding post-
Soviet name. For example, Leningrad soviet St. Petersburg pairs up objects
mentioning the Soviet and post-Soviet names, respectively, of this well-known
city. Then the expression:

link〈� soviet �〉(ICDT),

retrieves all documents containing Soviet versions of location names mentioned
in documents about ICDT, and the expression:

link〈� soviet Peterhof〉(ICDT),

retrieves all documents containing the Soviet names of the Russian town Pe-
terhof, if mentioned in documents about ICDT. In Section 4.2 we will see more
examples of simlinks.

For the remainder of this article, we will always use the language ASL with
simlinks as link conditions. In particular, if K ⊆ K and S ⊆ S then we write
ASL(K, S) for the fragment of ASL expressions that use only keywords in K and
link conditions in {k ∼ l | k, l ∈ K and ∼∈ S}.

Relationship to the semijoin algebra Search queries are a special kind of
database queries. It is therefore natural to ask how the language ASL (with
simlinks) compares to more standard query languages. Observing that the link
operator is a kind of semijoin, a comparison with the semijoin algebra seems a
good approach to this question. (Recall that semijoin algebra is the version of
the relation algebra where the join operator is replaced by the semijoin operator
[Leinders et al. 2005; Leinders and Van den Bussche 2007].)

Since the relational algebra works on relations instead of dataspaces, we
need a relational representation of a dataspace.
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Fig. 2. A dataspace and its relational representation.

Fig. 3. Syntax of SA.

Definition 22. For each dataspace D let rep(D) be the binary relation {(o, i) |
o ∈ D and i ∈ o} over the relation schema {id, item}.

The objects in the id-column of this relation are regarded as object identifiers;
the semijoin algebra will not be able to peek inside the objects in any other
way than working with the item column. This is a standard representation for
objects in the relational model (e.g., Agrawal et al. [2001] and Litwin et al.
[1991]); note, however, that any reasonable representation would suffice in
what follows. An example is shown in Figure 2.

In the version of the semijoin algebra we are using, keywords on items
are used as selection conditions, and simrels on items and equality on objects
(viewed as ids) are used as semijoin conditions. The relation symbol T (for
“Table”) stands for the binary representation of the input dataspace. Every ex-
pression of the algebra has an output schema that is either empty, the schema
{id, item} itself, or one of the unary schemas {id} or {item} (we do not have renam-
ing). Expressions must be well-typed, for example, we only allow the union of
two relations over the same schema. The full syntax of semijoin algebra (abbre-
viated SA) expressions, together with the derivation of their output schemas, is
given in Figure 3. There, the notation E : � denotes that E is a legal expression
with output schema �.
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The semantics of projection π , union ∪, and difference − is well known; the
semantics of the semijoin operators is as follows.

σk(R) := {t ∈ R | t(item) ∈ k}
R1 � R2 := {t1 ∈ R1 | ∃t2 ∈ R2 : t2(id) = t1(id)}

R1 �∼ R2 := {t1 ∈ R1 | ∃t2 ∈ R2 : t1(item) ∼ t2(item)}
R1 �=,∼ R2 := {(o, i) ∈ R1 | ∃ j : (o, j) ∈ R2 and i ∼ j}.

So, � is a normal natural semijoin on the common id attribute; �∼ is a ∼-
semijoin on the common item attribute; and �=,∼ is a combination of the two.

Definition 23. A search query q is definable in SA if there exists an SA
expression E : � with id ∈ � such that q(D) = πid(E)(rep(D)), for all dataspaces
D. We also say that E defines q in this case.

The following is now expected:

PROPOSITION 24. Let K ⊆ K and S ⊆ S. Every search query definable in
ASL(K, S) is also definable in SA(K, S).

PROOF. Here is a straight syntactic translation:

SA[k] := σk(T)

SA[e1 and e2] := πidSA[e1] − (πidSA[e1] − πidSA[e2])

SA[e1 or e2] := πidSA[e1] ∪ πidSA[e2]

SA[e1 except e2] := πidSA[e1] − πidSA[e2]

SA[link〈k ∼ l〉 e] := πid(SA[k] �∼ πitem(SA[l] � πidSA[e]))

Is the converse true as well? The answer is no, and we will perform a thor-
ough analysis of the situation, with the goal of arriving at a well-defined frag-
ment of SA that is equivalent to ASL.

The first observation is that SA can express boolean combinations of key-
words. Indeed, let k ∈ K be a keyword. The SA expression πid(T − σk(T)) defines
the negated keyword ¬k, that is, the query q(D) = {o ∈ D | ∃i ∈ o : i /∈ k}.
We have already seen in Example 10 that negated keywords, and more gener-
ally, Boolean combinations of keywords, are not definable in ASL. This is easily
repaired by closing the keywords under the Boolean operators.

Definition 25. For K ⊆ K, let K∗ be the smallest set of keywords containing
K that is closed under the operators ¬ and ∨, where

¬k := {i ∈ I | i 	∈ k} and

k ∨ l := {i ∈ I | i ∈ k or i ∈ l}.
Note that whenever K is nonempty, K∗ necessarily includes the wildcard key-
word �, which matches all items, since � ≡ k ∨ ¬k.

We can now revise Proposition 24 as follows:

PROPOSITION 24 [REVISED] 1. Let K ⊆ K and S ⊆ S. Every search query de-
finable in ASL(K∗, S) is also definable in SA(K, S).
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PROOF. The syntactic translation from the proof of Proposition 24 can be
extended as follows: (where k ∈ K, and ϕ and ψ stand for Boolean combinations
of keywords),

SA[k] := σk(T)

SA[¬ϕ] := T − SA[ϕ]

SA[ϕ ∨ ψ] := SA[ϕ] ∪ SA[ψ].

The next proposition points at a number of distinct query constructions
definable in SA but not in ASL.

PROPOSITION 26. None of the following SA queries is definable in ASL, even
over the Boolean closure of keywords

E1 := πid(σk(T) �=,∼ σl(T))

E2 := πid(T − T �∼ πitemσk(T))

E3 := πid(σk(T) �∼ πitem(σl(T) �∼ πitemσm(T)))

E4 := πid(T �∼(πitem(T) − πitem(T � πidσk(T)))).

More precisely, for each of these queries we can pick the keywords k, l, m, and
simrel ∼ such that the query is not definable in ASL(K∗, S) with K = {k, l, m}
and S = {∼}.

Note that, referring to the items i ∈ k as k-items, the four expressions,
E1–E4, define the following queries.

(1) Retrieve all objects containing a k-item i and an l-item j such that i ∼ j.
(2) Retrieve all objects containing an item that is not ∼ to any k-item in the

dataspace.
(3) Retrieve all objects containing a k-item that is ∼ to some l-item j in the

dataspace, and j itself is ∼ to some m-item in the dataspace.
(4) Retrieve all objects containing an item i that is ∼ to an item that is not

present in any object containing a k-item.

These queries are shown to be undefinable in ASL(K∗, S) by showing that they
are not bisimulation invariant, then invoking Lemma 19.

PROOF OF PROPOSITION 26. For the query q1 expressed by E1, we pick k =
{a1, a2} and l = {b1, b2}, with a1 ∼ b1 and a2 ∼ b2. Now consider:

a1

b1

o

︸ ︷︷ ︸
D

a1

b2

o1

a2

b1

o2

︸ ︷︷ ︸
D′

Let K = {k, l} and let L be the set of all link conditions {p ∼ p′ | p, p′ ∈ K∗}.
Then (D, o), (D′, o1), and (D′, o2) are all bisimilar (n-bisimilar for any n) under
K∗ and L. The verification of this claim proceeds by induction on n.
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— Case n = 0. Here it suffices to show that o �K∗ o1 �K∗ o2, which readily
follows from the observation that, writing k ∧ l for ¬(¬k ∨ ¬l),

K∗ = {k, l,¬k,¬l, k ∨ l, k ∨ ¬l,¬k ∨ l, k ∧ l, k ∧ ¬l,¬k ∧ l,∅, �}.
By construction, o, o1, and o2 all satisfy the same keywords in this set.

— Case n > 0. Suppose that (D, o) �K∗,L
n−1 (D′, o1) �K∗,L

n−1 (D′, o2). We only need to
show that (D, o) �K∗,L

n (D′, o1) and (D, o) �K∗,L
n (D′, o2), since (D′, o1) �K∗,L

n
(D′, o2) then follows by transitivity of �K∗,L

n . We check the Forth and Back
properties.

(Forth) Let λ = p ∼ p′ be an arbitrary simlink in L, and let o′ be an
arbitrary object in D with λ(o, o′). We need to show that there exists
o′

1 and o′
2 in D′ such that, (1) λ(o1, o′

1) and (D, o) �K∗,L
n−1 (D′, o′

1); and (2)
λ(o2, o′

2) and (D, o) �K∗,L
n−1 (D′, o′

2). Theretoward, first observe that, since
D is a singleton, we must have o′ = o. Moreover, since the only items in
o that are related by ∼ are a1 and b1, λ(o, o) implies a1 ∈ p, b1 ∈ p′, and
a1 ∼ b1.
(1) Then, since a1 ∈ o1 and a2 ∈ o2, certainly also λ(o1, o2). Furthermore,

(D, o) �K∗,L
n−1 (D′, o2) by the induction hypothesis. As such, the Forth

property holds for (D′, o1).
(2) To see that the Forth property also holds for (D′, o2), first observe

that for any of the keywords in K∗, we have a1 ∈ p if and only if,
a2 ∈ p and b1 ∈ p′ if and only if, b2 ∈ p′. Hence, since a1 ∈ p and
b1 ∈ p′, also a2 ∈ p and b2 ∈ p′. Thus, a2 ∈ o2 ∩ p, b2 ∈ o1 ∩ p, and
a2 ∼ b2. Hence λ(o2, o1). Furthermore, (D, o) �K∗,L

n−1 (D′, o1) by the
induction hypothesis. As such, the Forth property holds for (D′, o2).

(Back) Similar to Forth.

So in particular, (D, o) and (D′, o1) are bisimilar under K∗ and L. Yet, o ∈ q1(D),
whereas o1 /∈ q1(D′). Hence q1 is not definable in ASL(K∗, S) by Lemma 19.

For the query q2, expressed by E2, we use items a, a′, and b with k = {b}
and a′ ∼ b. Now consider D = {o1, o2} and D′ = {o′

1, o2} with o1 = {a, a′};
o2 = {b}; and o′

1 = {a′}. Let K = {k, l} and let L be the set of all link conditions
{p ∼ p′ | p, p′ ∈ K∗}. Then (D, o1) is bisimilar to (D′, o′

1) under K∗ and L (as can
again be verified by induction), but o1 ∈ q2(D), whereas o′

1 /∈ q2(D′).
For the query q3 expressed by E3, we pick k = {a}; l = {b, b1, b2}; and m = {c},

with a ∼ b, b ∼ c, a ∼ b1, and b2 ∼ c. Now consider D = {o1, o2} and D′ = {o1, o2}
with o1 = {a}; o2 = {b, c}; and o′

2 = {b1, b2, c}. Let K = {k, l, m} and let L be the
set of all link conditions {p ∼ p′ | p, p′ ∈ K∗}. Then (D, o1) is bisimilar to (D′, o1)
under K∗ and L, but o1 ∈ q3(D) whereas o1 /∈ q3(D′).

For the query q4 expressed by E4, we use items a, b, and c, with k = {a},
and ∼ interpreted as equality. Now consider D = {o1, o2} and D′ = {o′

1, o2} with
o1 = {b, c}; o2 = {a, b}; and o′

1 = {b}. Let K = {k} and let L be the set of all link
conditions {p ∼ p′ | p, p′ ∈ K∗}. Then (D, o1) is bisimilar to (D′, o′

1) under K∗

and L, but o1 ∈ q4(D) whereas o′
1 /∈ q4(D′).

Proposition 26 can inspire us to restrict SA so as to obtain a fragment equiv-
alent to ASL. E1 suggests that we should banish the combined semijoin �=,∼.
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E2 suggests that we should not allow unrestricted use of the result of a �∼
semijoin; we should project the result. But E3 shows we should not project on
{item}, so we conclude we must always project the result of �∼ on {id}. Moreover,
E4 suggests that we should not allow projection on {item} altogether, except of
course to allow for a semijoin �∼ to be applied. Finally, we should disallow
projection on the emptyset, since this has no direct analogue in ASL. We thus
arrive at the following fragment of SA, which we denote by SAsearch.

Definition 27. The fragment SAsearch of SA is defined by the following rules:

— The operators �=,∼, π{item} and π∅ are disallowed.
— The rule for �∼ is changed as follows:

E1 : {id, item} E2 : {id, item} ∼ ∈ S
π{id}(E1 �∼ π{item}E2) : {id} .

With these restrictions, we are ready to establish the connection between
associative search and the semijoin algebra.

THEOREM 28. Let K ⊆ K and S ⊆ S. A search query is definable in ASL(K∗, S)
if and only if it is definable in SAsearch(K, S).

PROOF. The only-if direction follows from the observation that the trans-
lation from ASL to SA given in the proof of Proposition 24 stays within the
fragment SAsearch.

The if-direction is also proven by a translation, but a complication here
is the translation of subexpressions with output schema {id, item}, since such
intermediate results are not directly representable by the result of a search
query (which can only return id’s).

Formally, for each SAsearch expression E we construct a finite set χE of pairs
(e, k), with e an ASL(K∗, S) expression and k ∈ K∗, such that for all D:

— if the output schema of E is {id, item}, then E(rep(D)) equals:⋃
(e,k)∈χE

{(o, i) | o ∈ e(D), i ∈ o ∩ k};

— if the output schema of E is {id}, then E(rep(D)) equals:⋃
(e,k)∈χE

{o ∈ e(D) | o |= k}.

Of course the global SA expression E expressing the search query q has output
schema � with {id} ⊆ � ⊆ {id, item}, and thus q is defined in ASL(K∗, S) by:

(e1 and k1) or . . . or (en and kn),

where χE = {(e1, k1), . . . , (en, kn)}.
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We construct χE by induction as follows.

χT := {(�, �)}
χσl(E) := {(e, k ∧ l) | (e, k) ∈ χE}
χπid(E) := {(e and k, �) | (e, k) ∈ χE}
χE1∪E2 := χE1 ∪ χE2

χπid(E1 �∼ πitem E2) := {(e1 and link〈k1 ∼ k2〉 e2, �) | (e1, k1) ∈ χE1 , (e2, k2) ∈ χE2}
χE1 � E2 := {(e1 and e2 and k2, k1) | (e1, k1) ∈ χE1 , (e2, k2) ∈ χE2}.

For E = E1 − E2 we first need some terminology and notation. Let χE2 =
{(e1, k1), . . . , (en, kn)}. A splitter of E2 is a pair (S+, S−) of disjoints subsets of
{1, . . . , n} such that S+ ∪ S− = {1, . . . , n}. Then,

χE1−E2 := {(e except (ei1 or . . . or eir ), k ∧ ¬(kj1 ∨ · · · ∨ kjs )) | (e, k) ∈ χE1 ,

({i1, . . . , ir}, { j1, . . . , js}) a splitter of E2}.
The correctness of χE is proven by induction on E. We only show the reasoning
for E = E1 − E2; the other cases are similar. Suppose that E1 and E2 both have
schema {id, item}. Then, by induction hypothesis,

(o, i) ∈ E(rep(D))

⇔ (o, i) ∈ E1(rep(D)) and (o, i) 	∈ E2(rep(D))

⇔ there exists (e, k) ∈ χE1 : o ∈ e(D), i ∈ o ∩ k

and for all 1 ≤ m ≤ n : o 	∈ em(D) or i 	∈ o ∩ km

where χE2 = {(e1, k1), . . . (en, kn)}
⇔ there exists (e, k) ∈ χE1 : o ∈ e(D), i ∈ o ∩ k

and a splitter ({i1, . . . , ir}, { j1, . . . , js}) for E2

such that o 	∈ em(D) for m ∈ {i1, . . . , ir}
and i 	∈ o ∩ km for m ∈ { j1, . . . , js}

⇔ (o, i) ∈
⋃

(e,k)∈χE1−E2

{(o′, i′) | o′ ∈ e(D), i′ ∈ o′ ∩ k}.

The reasoning is similar when E1 and E2 both have schema {id}.
We conclude this section with a remark concerning conjunctions in join condi-

tions. We have defined simlinks as link conditions involving just a single condi-
tion k ∼ l. But link conditions involving a conjunction of two or more such condi-
tions are also very natural. For example, the query link〈(k1 ∼1 l1) ∧ (k2 ∼2 l2)〉(e),
applied to a dataspace D, would return those objects o ∈ D for which there ex-
ists an object o′ in e(D) such that there exists a k1-item i ∈ o and an l1-item
j ∈ o′ such that i ∼1 j, and there also exists a k2-item i ∈ o (not necessarily the
same i) and an l2-item j ∈ o′ (not necessarily the same j) such that i ∼2 j.

Such conjunctive join conditions, however, can bring us outside the semijoin
algebra. We can see this using the following example, which already gives a
taste of what will be served in the next two sections.
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Consider a chain of stores selling wine and cheese, with some stores located
in France and others in Italy. We can model each store as a set of items. One
item simply indicates the country France or Italy; other items are of the form
(wine, v) listing all kinds of wine v sold by the store; and the remaining items are
of the form (cheese, x) listing all kinds of cheese x sold by the store. Define the
simrel samewine as the set of all identical pairs of the form ((wine, v), (wine, v))
for arbitrary wines v; define analogously the simrel samecheese as the set of all
identical pairs of the form ((cheese, x), (cheese, x)) for arbitrary cheeses x.

Now consider the query “list all stores in France for which there exists a store
in Italy selling some same wine and some same cheese”, formally expressed as
follows:

France and link〈(� samewine �) ∧ (� samecheese �)〉(Italy).

This query is not expressible in the semijoin algebra. This can be proven for-
mally as follows. Consider relational databases over two unary relations France
and Italy, and two binary relations Wine and Cheese. The relation France (Italy)
holds the ids of stores located in France (Italy), and the relation Wine (Cheese)
holds the pairs (o, u) such that wine (cheese) u is sold in store o. Consider the
two specific database instances D1 and D2, with the following content for D1:

France
1

Italy
2

Wine
1 bordeaux
2 bordeaux

Cheese
1 roquefort
2 roquefort

So, in D1, store 1 is French and store 2 is Italian and they offer exactly the
same products (one wine and one cheese). Obviously then, the query applied to
D1 will return store 1. The content for D2 is the following:

France
3

Italy
4
5
6

Wine
3 bordeaux
4 bordeaux
5 sangiovese
6 sangiovese

Cheese
3 parmesan
4 roquefort
5 parmesan
6 roquefort

Observe that our query has the empty answer on D2. It can be verified, however,
that (D1, 1) and (D2, 3) are guarded bisimilar and hence cannot be distinguished
in the semijoin algebra [Leinders et al. 2005; Leinders and Van den Bussche
2007]. Consequently, any semijoin algebra query that returns 1 on D1 will
return 3 on D2. Since our query does not have this property, it is not expressible
in the semijoin algebra.

It seems very possible to define a fragment of the relational algebra appro-
priate for a generalization of Theorem 28 to conjunctions in link conditions. We
leave this involved exercise to the interested reader.

3. APPLICATION 1: SEARCHING CLASSICAL RELATIONS

The theory presented in Section 2 holds for any concrete interpretation of I. As
an illustration of how this general theory can be applied, let us fix an infinite
domain V of values and a relation schema �, that is, a finite set of attributes.
We can use the set of attribute-value pairs � × V as our set I of items. Note
that a tuple t : � → V is then an object over I, and a finite relation R over
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� is a dataspace over I. Also note that conversely, not all objects over I are
proper tuples, because in a proper tuple every attribute occurs exactly once.
Hence, not all dataspaces in this setting are proper relations. Let us denote the
subclass of dataspaces over � × V that are finite relations over � by R.

3.1 Boolean Search

To search R we consider here the set of keywords:

LIT := {�} ∪ {{(a, v)} | a ∈ �, v ∈ V},
consisting of the wildcard � and the literal keywords over I = � ×V. Note that
a literal keyword (a, v) corresponds to the relational selection operator σa=v.
Indeed, for all R ∈ R Definition 4 specializes to:

(a, v)(R) = {t ∈ R | t(a) = v},
since R consists only of tuples over �. So, the language BSL(LIT) evaluated over
relations in R corresponds to the fragment of the relational algebra consisting
of just the three operators of constant selection, union, and difference.

It turns out that our notion of K-distinguishing search queries corresponds
in this setting to the so-called fully C-generic queries. Fully generic queries
without constants have been introduced and investigated (in a much richer
setting than mere selection queries) by Beeri, Milo and Ta-Shma [Beeri et al.
1996; Beeri et al. 1997]; here we consider the version with constants.

Definition 29 (C-epimorphism). Let C ⊂ V be a finite set of constants. A
C-epimorphism is a mapping f : V → V such that both f |C and f −1|C are the
identity on C. We extend f : V → V to items, objects, and dataspaces in the
canonical, pointwise manner:

f (a, v) := (a, f (v)),

f (o) := { f (a, v) | (a, v) ∈ o},
f (R) := { f (o) | o ∈ R}.

Now a search query q is said to be fully C-generic (on the class R) if for any
relation R over � and any C-epimorphism f , we have q( f (R)) = f (q(R)).

Note that f is a surjective homomorphism from R to f (R), which justifies our
use of the term, epimorphism, which traditionally means surjective homomor-
phism.

We establish:

PROPOSITION 30. Let C be a finite set of constants, and let K = {{(a, v)} | a ∈
�, v ∈ C}. The following are equivalent for any search query q:

(1) q is K-distinguishing on the class R;
(2) q is additive and fully C-generic on R.

PROOF. (1 → 2) Since q is K-distinguishing onR, we know that for every R ∈
R and every t ∈ R we have t ∈ q(R) if and only if t ∈ q({t}). This readily implies
additivity. It remains to show that q is fully C-generic on R. Theretoward, fix
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R ∈ R arbitrarily and let f be a C-epimorphism. Observe that t �K f (t) for
all t ∈ R. Indeed, let k = {(a, v)} be an arbitrary keyword in K with a ∈ � and
v ∈ C. If t |= k, then t(a) = v. Since f |C is the identity on C, f (v) = v and
hence f (t)(a) = v. Thus f (t) |= k. Conversely, if f (t) |= k then f (t)(a) = v. Since
f −1|C is the identity on C, also t(a) = v. Therefore, t |= k. As such, t satisfies
the same keywords in K as f (t). Since q is K-distinguishing, we hence have
t ∈ q(R) ⇔ f (t) ∈ q( f (R)), which implies q( f (R)) = f (q(R)), as desired.

(2 → 1) Let R and R′ be arbitrary relations in R and let t ∈ R and t′ ∈ R′

such that t �K t′. We need to show that t ∈ q(R) ⇔ t′ ∈ q(R′). Theretoward,
first observe that for all a ∈ �, if t(a) ∈ C then t′(a) = t(a) (since t �K t′) and
conversely if t′(a) ∈ C then t(a) = t′(a) (for the same reason). Then construct
the tuple u such that for all a ∈ �:

— if t(a) ∈ C then u(a) = t(a) = t′(a); and
— if t(a) 	∈ C then u(a) 	∈ C and u(a) 	= u(b) for every b ∈ � distinct from a.

It is readily verified that there exists C-epimorphism f and f ′ such that f (u) = t
and f ′(u) = t′. Now reason as follows:

t ∈ q(R) ⇔ t ∈ q({t})
⇔ f (u) ∈ q({ f (u)})
⇔ u ∈ q({u})
⇔ f ′(u) ∈ q({ f ′(u)})
⇔ t′ ∈ q({t′})
⇔ t′ ∈ q(R′).

Hence the proposition.

From Proposition 30; Corollary 12; and the fact that BSL(LIT) corresponds to
the fragment of the relational algebra consisting of just the three operators of
constant selection, union, and difference, we then obtain:

COROLLARY 31. A search query q on relations over � is definable in the rela-
tional algebra using only the operators constant selection, union, and difference,
if and only if q is additive and fully C-generic for some finite set C of constants.

The main purpose of this modest theorem is to illustrate that our general
theory can be effectively applied and connected to earlier work. Moving to-
wards associative search over classical relations, current systems implement
languages approaching the full relational algebra (e.g., Golenberg et al. [2008]
and Qin et al. [2009]), the expressive power of which is already well understood
[Abiteboul et al. 1995].

4. APPLICATION 2: SEARCHING ATTRIBUTE-VALUE DATASPACES

We next apply the abstract theory of Section 2 to the concrete setting of
attribute-value dataspaces as they have been investigated in the literature
[Halevy et al. 2006; Dong and Halevy 2007; Dittrich and Vaz Salles 2006]. In
this setting, items are attribute-value pairs as in the relational setting of Sec-
tion 3, so I = � × V. The important difference, however, is that the universe
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of attributes � can now be infinite; there is no longer a fixed finite relation
schema. Of course each dataspace is finite, so in each dataspace just a finite
number of attributes will occur, but these attributes can vary from dataspace
to dataspace and even from object to object. Moreover, attributes can appear
multiple times in the same object, with different values. So, an object really is
just a nonempty finite set of items, without any restriction.

The dataspace models in the literature [Halevy et al. 2006; Dong and Halevy
2007; Dittrich and Vaz Salles 2006] give each object an id, and naturally rep-
resent a dataspace D as a set of triples {(o, a, v) | o ∈ D and (a, v) ∈ o}. We
argue that our view of a dataspace as just a set of objects is equivalent. Indeed,
we just showed how to go from our representation to the set of triples; if one
wants to go in the converse direction, the only difficulty one may encounter is
that there might be two object ids in the triple set with exactly the same set
of associated (a, v) pairs. In that case we can add an explicit id attribute to the
objects, so that the sets become distinct. Having explicit id attributes is also
necessary when we need to represent links between objects based on ids. We
will see an example of such linking later (Example 38).

4.1 Boolean Search

The next question is what keywords to use for searching attribute-value datas-
paces. Surely we need all literal keywords (a, v) (as in the classical relational
case), so that we can formulate basic queries like “retrieve all persons who live
in Belgium, like the beer Duvel, but do not like the beer Heineken”:1

((country : Belgium) and (likes : Duvel)) except (likes : Heineken).

We also want negation separately on attributes and values: for example,

(likes : ¬Heineken)

retrieves objects containing a value for attribute likes that is different from
Heineken, and (¬likes : Heineken) retrieves objects containing Heineken as the
value of an attribute different from likes. Note that, since the set of attributes is
not fixed, we cannot express the last example by a disjunction using all possible
attributes other than likes. Similarly, we need wildcards on values as well as
on attributes, so (� : Belgium) retrieves all objects with value Belgium for some
attribute. Finally, we need disjunctions such as (likes : ¬(Heineken ∨ Budweiser)).
(We only need negated disjunctions; positive disjunctions can already be ex-
pressed in BSL using or.)

To sum up, we propose the following system of keywords for attribute-value
pairs.

1To improve readability, we will write attribute-value pairs (a, v) as (a : v), conforming more to a
programming language-like syntax.
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Definition 32. First define the following abbreviations for a ∈ �, v ∈ V,
A ⊆ �, and V ⊆ V:

(a : v) := {(a, v)}
(a : ¬V) := {(a, v) | v ∈ V − V}
(¬A: v) := {(a, v) | a ∈ � − A}

(¬A: ¬V) := {(a, v) | a ∈ � − A, v ∈ V − V}.

Note that the wildcard � is readily obtained by (¬∅,¬∅). The set AV of attribute–
value keywords is the set consisting of all keywords of the form:

(a : v) | (a : ¬V) | (¬A: v) | (¬A: ¬V),

where a ∈ �, v ∈ V, and A ⊆ �, V ⊆ V are finite.

A first indication of the flexibility of this keyword system is that we do not
need to add Boolean combinations:

PROPOSITION 33. BSL(AV) is equivalent to BSL(AV∗), where AV∗ denotes
Boolean closure of AV keywords (cf. Definition 25).

PROOF. It is readily verified that every Boolean combination of AV keywords
amounts to a disjunction of AV keywords. Such a disjunction can be expressed
in BSL using or. To illustrate using a few concrete examples:

¬(a : v) ≡ (¬a : ¬∅) or (¬∅ : ¬{v})
¬(¬A: v) ≡ (A: ¬∅) or (¬∅ : ¬{v})

(¬A: v) ∨ (a : ¬V) ≡ (¬A: v) or (a : ¬V)

¬ (
(¬A: v) ∨ (a : ¬V)

) ≡ (A \ {a} : ¬∅) or (A∩ {a} : V) or (¬{a} : ¬{v}) or (a : V).

Since we have the wildcard, Corollary 9 applies, so we know that BSL(AV)
defines exactly all search queries that are K-distinguishing for some finite set
K ⊆ AV. Recall that a search query q is K-distinguishing if it is invariant under
the equivalence �K on objects (Definition 7). In the attribute-value setting,
we can formulate a more intuitive alternative to this equivalence relation,
directly in terms of attributes and values, rather than AV keywords. The idea,
similar to full genericity, is that only a finite set of attributes and values can
be distinguished.

Definition 34. Let W be a finite set of attributes and values. Let � be a
blank value, which is an arbitrary element not in W. For an attribute or value
x, define

blankW(x) :=
{

x if x ∈ W
� otherwise.
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We extend blankW to attribute-value pairs, objects, and dataspaces in the
canonical, pointwise manner:

blankW(a, v) := (blankW(a), blankW(v)),

blankW(o) := {blankW(a, v) | (a, v) ∈ o},
blankW(D) := {blankW(o) | o ∈ D}.

Two objects o1 and o2 are called W-equivalent if blankW(o1) = blankW(o2). We
denote this by o1 �W o2. We now say that a search query q is W-distinguishing
if for any two dataspaces D1 and D2 and objects o1 ∈ D1 and o2 ∈ D2 that are
W-equivalent, we have o1 ∈ q(D1) iff o2 ∈ q(D2).

Example 35. Intuitively, blankW replaces all attributes and values not in W
by the same constant �. Two objects are W-equivalent if they are the same after
blanking. To illustrate, reconsider the attribute-value dataspace of Figure 1.
Then blank {Bill}(o1) and blank {Bill}(o3) both yield:

�: Bill
�: �

Hence, o1 �{Bill} o3. In contrast, blank {Bill,author}(o1) and blank {Bill,author}(o3) yield
respectively:

�: Bill
�: �

author: Bill
author: �

�: �

Hence o1 	�{Bill,author} o3.

PROPOSITION 36. A search query is K-distinguishing for a finite set K ⊆ AV
if and only if, it is W-distinguishing for a finite set of attributes and values W.

PROOF. The crux of the matter is that if two objects are K-equivalent, for
some finite set of AV keywords K, then they are W-equivalent, where W is the
finite set of attributes and values explicitly mentioned in the keywords in K.
Conversely, if two objects are W-equivalent, for some finite set of attributes
and values W, then they are K-equivalent, where K is the finite set of all AV
keywords that can be constructed using the elements in W.

4.2 Associative Search

Let us now turn to associative search in the attribute-value context. What are
the simrels needed to join objects in an attribute-value dataspace? Focusing on
equijoins, there are three natural possibilities: two pairs can be compared on
their values, on their attributes, or on both together. So, for the set S of simrels
in the attribute-value setting, we will use the set {eq, eq-attr, eq-val}, defined
as follows:
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Definition 37. An eqrel (short for equality relation) is one of the three fol-
lowing simrels on attribute–value pairs:

(a, v) eq (b, w) ⇔ a = b and v = w,

(a, v) eq-attr (b, w) ⇔ a = b,

(a, v) eq-val (b, w) ⇔ v = w.

We denote by EQ the set {eq, eq-attr, eq-val} of all eqrels.

Example 38. For example, the following is an expression in the associative
search language ASL(AV, EQ):

link〈(name : �) eq-val (author : �)〉(published in : ICDT 2009)

It defines the query that retrieves all authors of objects published in ICDT
2009. More precisely, it retrieves all objects with a value for attribute name that
equals a value for attribute author in an object containing the item (published in,

ICDT 2009).

It should be noted that in other dataspace models based on attribute-value
pairs [Dong and Halevy 2007; Dittrich and Vaz Salles 2006], objects are not
joined using eqrel simlinks, but through explicit named links (edges) between
objects. So there, a dataspace is not merely a set of objects, but a directed graph
of objects.

Example 39. As discussed in the opening of Section 4, objects in the datas-
pace model of Dong and Halevy are represented by explicit identifiers, and
relationships between objects are represented as triples [Dong and Halevy
2007]. For example, the subset {o1, o4} of the attribute-value dataspace given
in Figure 1 is captured in the Dong-Halevy model as:

{〈o1, name, Bill〉,
〈o1, email, bill@gmail〉,
〈o1, email, bill@yahoo〉,
〈o1, likes, o4〉,
〈o4, drink, vodka〉,
〈o4, origin, Russia〉}.

Note in particular the edge between object o1 and o4 defined by 〈o1,likes, o4〉.
Using eqrel simlinks as we do, an explicit graph model is redundant. Indeed,
as illustrated in Example 38, named edges (for instance linking papers to their
authors) can easily be represented using id attributes for objects and “pointer”
attributes (name and author) having these ids as values.

We next show that the abstract bisimulation, Lemma 19, can well be applied
in the present setting as an aid to understand the limits of expressive power of
ASL(AV, EQ). For example, consider the generic equality selection query qa=b,
for two attributes a and b, defined as follows:

qa=b(D) = {o ∈ D | ∃v : (a, v) ∈ o and (b, v) ∈ o}.
It is not immediately clear whether or not this query is definable in ASL(AV, EQ);
it turns out it is not.
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PROPOSITION 40. qa=b is not definable in ASL(AV, EQ).

PROOF. In a nutshell, the proof consist of showing that qa=b is not bisimula-
tion invariant relative to any finite set of AV keywords and eqrel simlinks, and
then invoking Lemma 19. Since our aim is to show that qa=b is not definable
in ASL using any set of AV keywords and eqrel simlinks, the proof technique
is necessarily more abstract than that followed in the proof of Proposition 26,
where it sufficed to restrict ourselves to carefully constructed sets of keywords
and simlinks, respectively.

Concretely, let e be an arbitrary expression in ASL(AV, EQ), let K be the finite
set of keywords mentioned in e (be it as an expression or as a link condition),
let:

L = {k ∼ l | k, l ∈ K,∼∈ EQ},
and let n = depth(e) be the nesting depth of link expressions in e. To see that e
cannot define qa=b, first define, for every M ⊆ K, the set [[M]] of pairs matched
by all keywords in M and none of the keywords in K − M:

[[M]] := (� × V) ∩
⋂
k∈M

k −
⋃

k′∈K−M

k′.

Then the set {[[M]] | M ⊆ K} forms a partition of � × V. In particular, � × V =⋃
M⊆K[[M]]. Since the subset {(a, u) | u ∈ V} of � × V is infinite and since

there are only a finite number of subsets of K, there must be at least one
Ma ⊆ K for which [[Ma]] ∩ {(a, u) | u ∈ V} is infinite. Then let {Mb

1 , . . . , Mb
m} =

{M ⊆ K | ∃u ∈ V : (b, u) ∈ [[M]]}. Since {u | (a, u) ∈ [[Ma]]} is infinite, since
V = ⋃n

m=1{u | (b, u) ∈ [[Mb
i ]]}, and since m is finite, there must exist some

1 ≤ i ≤ m such that:

{u | (a, u) ∈ [[Ma]]} ∩ {u | (b, u) ∈ [[Mb
i ]]},

is infinite. Then fix v,w in this intersection with v 	= w. By construction,
(a, v), (a, w) ∈ [[Ma]] and (b, v), (b, w) ∈ [[Mb

i ]], that is, (a, v) and (a, w) satisfy
the same keywords over K and similarly for (b, v) and (b, w). Now fix D as
follows.

(a, v)
(b, v)

o1

(a, v)
(b, w)

o2

(a, w)
(b, w)

o3

︸ ︷︷ ︸
D

To prove the proposition, it suffices to show (D, o1) �K,L
n (D, o2). Indeed, then

o1 ∈ e(D) ⇔ o2 ∈ e(D) by Lemma 19, while o1 ∈ qa=b(D) but o2 	∈ qa=b(D). As
such, e cannot define qa=b.

We actually show that (D, o1) �K,L
n (D, o2) and (D, o1) �K,L

n (D, o3) by si-
multaneous induction on n. When n = 0, o1 �K o2 and o1 �K o3 by construc-
tion ((a, v) matches the same keywords as (a, w) and (b, v) matches the same
keywords as (b, w)), and hence (D, o1) �K,L

0 (D, o2) and (D, o1) �K,L
0 (D, o3).

Inductively, it suffices to check the forth and back properties.
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(Forth) Suppose that there is some λ ∈ L and some p1 ∈ D such that λ(o1, p1). We
show that there exists p2, p3 ∈ D such that (1) λ(o2, p2) and (D, p1) �K,L

n−1 (D, p2)
and (2) λ(o3, p3) and (D, p1) �K,L

n−1 (D, p3).

— Case λ = k eq l. Then o1∩k∩ p1∩l is nonempty. There are two possibilities. (1)
When (a, v) is in the intersection, we can take p2 := p1 and p3 := o3. Indeed,
to see that it suffices to take p2 := p1, observe that (a, v) is also in o2∩k∩ p2∩l
(which is hence nonempty). Moreover, since � is an equivalence relation and
p1 = p2, also (D, p1) �K,L

n−1 (D, p2). To see that it suffices to take p3 := o3,
observe that by construction also (a, w) ∈ o3 ∩ k∩ p3 ∩ l since (a, v) and (a, w)
satisfy the same keywords in K. Moreover, since p1 is either o1,o2, or o3; since
(D, o1) �K,L

n−1 (D, o2) and (D, o1) �K,L
n−1 (D, o3) (by induction hypothesis); since

also (D, o2) �K,L
n−1 (D, o3) (by transitivity of �); and since (D, o3) �K,L

n−1 (D, o3)
(by reflexivity of �), certainly (D, p1) �K,L

n−1 (D, p3). (2) When (b, v) is in the
intersection, a symmetric argument shows that it suffices to take p2 := o2

and p3 := p1.
— Case λ = k eq-attr l. Then π1(o1 ∩ k) ∩ π1(p1 ∩ l) is nonempty. As such, either

a is in the intersection, or b is. In both events, it can be seen using a similar
argument as in the case λ = k eq l, that it suffices to take p2 := p1 and
p3 := p1.

— Case λ = k eq-val l. Then π2(o1 ∩ k) ∩ π2(p1 ∩ l) is nonempty. Since v is the
only word in π2(o1), π2(o1 ∩ k) ∩ π2(p1 ∩ l) = {v}. There are four possibilities
why this is so:
(a) (a, v) ∈ o1 ∩ k and (a, v) ∈ p1 ∩ l;
(b) (a, v) ∈ o1 ∩ k and (b, v) ∈ p1 ∩ l;
(c) (b, v) ∈ o1 ∩ k and (a, v) ∈ p1 ∩ l;
(d) (b, v) ∈ o1 ∩ k and (b, v) ∈ p1 ∩ l.
Similar arguments as in the case λ = k eq l, show that it suffices to take
p2 := o2 and p3 := o3 in the first event; p2 := o1 and p3 := o2 in the second;
p2 := o3 and p3 := o3 in the third; and p2 := o2 and p3 := o3 in the fourth.

(Back) Similar to Forth.

4.3 On the Correspondence with the Semijoin Algebra

We conclude this section by returning to the equivalence between ASL and the
semijoin algebra. Recall that in Section 2.3 we defined the semijoin algebra to
work on abstract dataspaces represented as binary relations over the schema
{id, item}. While the equivalence of ASL and SAsearch (Theorem 28) can be directly
applied to the attribute-value setting, it is not so natural to store attribute-
value pairs in a single item column. It is more natural to represent attribute-
value dataspaces as sets of triples, that is, as ternary relations over the schema
{id, attr, val}. Also the RDF query language SPARQL works over such ternary
relations [W3C 2008; Gutierrez et al. 2004; Pérez et al. 2009]; RDF graphs can
also be viewed as a dataspace model [Dong and Halevy 2007].

So, it is worthwhile to define an alternative to SAsearch working on ternary
relations. An added simplification is that, since we are working with eqrel
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simlinks rather than simlinks based on general abstract simrels, we will no
longer need the ∼-semijoin operator and will have enough with the standard
natural semijoin.

Definition 41. The fragment SAAV of the semijoin algebra, defined on rela-
tions T : {id, attr, val}, is defined by the following grammar:

E ::= T | σattr=c(E) | σval=c(E) | E ∪ E | E − E |
| πα(E) | E � πid(E) | π{id}(E � πβ(E)),

where c ranges over attribute and value constants; α is either {id}, {id, attr}, or
{id, val}; and β is either {attr}, {val}, or {attr, val}.

The semantics of � is the standard natural semijoin on equality of common
attributes.

We have the following analog of Theorem 28.

THEOREM 42. A search query is definable in ASL(AV, EQ), if and only if it
is definable in SAAV, where we regard a dataspace D as a ternary relation
{(o, a, v) | o ∈ D and (a, v) ∈ o}.

PROOF. The only-if direction is similar to the proof of Theorem 28. AV key-
words are expressed using combinations of constant selections using union and
difference. Simlinks based on eq-attr, eq-val, or eq are expressed using semijoin
with projection on the right (the set β in the syntax definition) equal to {attr},
{val}, or {attr, val}, respectively.

The if-direction is also similar, but we have the added complication that
Boolean combinations of keywords are not directly available in the AV set-
ting. Yet, because of Proposition 33, we can simulate them in the language.
Proposition 33 is only formulated for BSL(AV), but the same argument holds for
ASL(AV, EQ), because link distributes over a disjunction of keywords used in a
simlink:

link〈(ϕ1 ∨ ϕ2) ∼ ψ〉(e) = link〈ϕ1 ∼ ψ〉(e) or link〈ϕ2 ∼ ψ〉(e).

Semijoins are translated to simlinks using an eqrel depending on β: if β = {attr}
we use eq-attr, if β = {val} we use eq-val, and if β = {attr, val} we use eq.

5. DISCUSSION

Our goal has been to provide the beginnings of a theoretical foundation for
search and associative search queries, motivated by the ubiquity of such queries
in everyday information systems. Our approach has been to investigate search
queries as restricted kinds of database queries, and to use the tools and the
concepts already developed in the theory of database queries.

We first presented a general abstract theory, then applied it to the concrete
setting of attribute-value dataspaces. It would be interesting to conduct a sim-
ilar application to the XML data model, for example, with XPath playing the
role of relational algebra.

Mainly inspired by dataspaces [Dong and Halevy 2007], we have focused
on selection queries, that is, queries that always return a subset of the orig-
inal objects. Current approaches to keyword search on structured databases
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[Golenberg et al. 2008; Qin et al. 2009; we give just two recent references]
return tuples of objects that are related by patterns. In the semijoin algebra
one can express such patterns as long as they are not cyclic, but the patterns
themselves cannot be returned. It remains to be investigated if and how our
theory should be extended so that patterns can be returned. Of course, one
can simply move to the full relational algebra, but then there is less news to
discover.

It would also be interesting to look at a similar theory of search queries
on RDF graphs (ternary relations, as discussed in Section 4.3). Indeed, RDF
graphs can be viewed as a particular instance of the classical relations, and
hence our results of Section 3.1 for Boolean search already apply here. The
expressivity of SPARQL, which is a kind of specialized relational algebra for
RDF, has been studied recently [Fletcher 2008; Gutierrez et al. 2004; Pérez
et al. 2009]. Given their close similarity to AV dataspaces, it might also be
fruitful to investigate specializations of our semijoin algebra fragment SAAV

into interesting fragments of SPARQL, or of its navigational extensions (e.g.,
Alkhateeb et al. [2009] and Pérez et al. [2008]).
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