
ARTICLE IN PRESS
Information Systems 30 (2005) 317–332
$Recommen

*Correspond

268299.

E-mail addr

(S. Vansummer
1Research A

Flanders (Belgi

0306-4379/$ - se

doi:10.1016/j.is
Towards practical meta-querying$

Jan Van den Busschea, Stijn Vansummerena,1,*, Gottfried Vossenb

aLimburgs Universitair Centrum, Universitaire Campus, B-3590 Diepenbeek, Belgium
bUniversity of Muenster, D-48159 Muenster, Germany

Received 31 March 2004; accepted 13 April 2004
Abstract

We describe a meta-querying system for databases containing queries in addition to ordinary data. In the context of

such databases, a meta-query is a query about queries. Representing stored queries in XML, and using the standard

XML manipulation language XSLT as a sublanguage, we show that just a few features need to be added to SQL to turn

it into a fully-fledged meta-query language. The good news is that these features can be directly supported by extensible

database technology.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Databases; Meta-querying; Stored queries; XML; XSLT; Extensible database technology
1. Introduction

Enterprise databases often contain not only
ordinary data, but also queries. Examples are view
definitions in the system catalog; usage logs or
workloads; and stored procedures as in SQL/PSM
or Postgres [1]. Unfortunately, these queries are
typically stored as long strings, which makes it
hard to use standard SQL to express meta-queries:

queries about queries. Meta-querying is an im-
portant activity in situations such as advanced
ded by M. Lenzerini

ing author. Tel.: +32-11-268219; fax: +32-11-

ess: stijn.vansummeren@luc.ac.be

en).

ssistant of the Fund for Scientific Research -

um).

e front matter r 2004 Elsevier Ltd. All rights reserve

.2004.04.001
database administration, database usage monitor-
ing, and workload analysis. Examples of meta-
queries to a usage log are:
(1)
d.
Which queries in the log do the most joins?

(2)
 Which queries in the log return an empty

answer on the current instance of the data-
base?
(3)
 View expansion: replace, in each query in the
log, each view name by its definition as given
in the system catalog.
(4)
 Given a list of new view definitions (under the
old names), which queries in the log give a
different answer on the current instance under
the new view definitions?
Query 1 is syntactical: it only queries the stored
queries on the basis of their expressions. Query 2 is
semantical: its answer depends on the results of
dynamically executing the stored queries. Query 3

ARTICLE IN PRESS

J. Van den Bussche et al. / Information Systems 30 (2005) 317–332318
is again syntactical, but more so than query 1 in
that it also performs syntactical transformations.
Query 4 is syntactical and semantical together.

To express meta-queries, database administra-
tors and other advanced users typically resort to a
programming language like Perl, in combination
with Dynamic SQL. It would be much nicer
if they would not have to ‘‘leave’’ the database
system and could express their meta-queries
directly in Interactive SQL. Indeed, already in
1993, in his SIGMOD Innovations Award speech,
Jim Gray urged the database community to lower
the wall between data and programs. In the same
vein, the Asilomar Report puts the unification
between programs and data high on the database
research agenda [2]. As queries are an important
kind of program in the context of databases,
support for meta-querying thus seems to be a step
in the right direction towards understanding
how we can unify programs and data in database
systems.

In this paper, we present a practical meta-
querying system based on the relational model.
Our main design goal was to use current DBMS
technology and only extend standard SQL with
specific meta-querying features where necessary.
Stored queries are represented as syntax trees in
XML format. This representation provides a
convenient basis for syntactical meta-querying.
Indeed, rather than reinventing the wheel and
designing a new sublanguage for syntactical
manipulation of stored queries, it allows us to
use the standard XML transformation language
XSLT for this purpose. Many syntactical meta-
queries can then directly be expressed simply by
allowing XSLT function calls within SQL expres-
sions.2

This combination of SQL and XSLT gives us a
basic level of expressive power, but for more
complex syntactical meta-queries we need a bit
more. To this end, we enrich the SQL language
with XML variables which come in addition to
2We embrace XSLT because it is the most popular and stable

standard general-purpose XML manipulation language to date.

When other languages, notably XQuery [3], will take over this

role, it will be an easy matter to substitute XSLT by XQuery in

our overall approach.
SQL’s standard range variables. XML variables
range not over the rows of a table, but rather over
the subelements of an XML tree. The range can be
narrowed by an XPath expression. (XPath is the
sublanguage of XSLT used to locate subelements
of XML documents.) XML variables thus allow us
to go from an XML document to a set of XML
documents. Conversely, we also add XML aggre-

gation [4], which allows us to go from a set of
XML documents to a single one.

SQL combined with XSLT and enriched with
XML variables and aggregation offers all the
expressive power one needs for ad-hoc syntactical
meta-querying. To allow for semantical meta-
querying as well, it now suffices to add an
evaluation function, taking the syntax tree of some
query as input, and producing the table resulting
from executing the query as output. We note that a
similar evaluation feature was already present in
the Postgres system.

What we obtain is Meta-SQL: a practical meta-
query language. Meta-SQL has as advantage that
it is not ‘‘yet another query language’’: it is entirely
compatible with modern SQL implementations
offered by contemporary extensible database
systems. Indeed, these systems already support
calls to external functions from within SQL
expressions, which allows us to implement the
XSLT calls. Furthermore, XML variables and
the evaluation function can be implemented
using set-valued external functions. As we will
show, the powerful feature of ‘‘lateral derived
tables’’, part of the SQL:1999 standard, turns out
to be crucial to make this work. XML aggregation,
finally, can be implemented as a user-defined
aggregate function.

We emphasize again that we are not proposing
yet another database language. Instead, our main
design goal was to stick as closely as possible to
standard SQL. Of course, a drastic alternative is to
abandon the relational model altogether and move
to, e.g., an XML-XQuery environment, where
meta-querying does not pose any problem. How-
ever, given the widespread use of relational
databases, a conservative approach such as ours
remains important.

This paper is further organized as follows.
In Section 2, we combine SQL with XSLT. In

ARTICLE IN PRESS

J. Van den Bussche et al. / Information Systems 30 (2005) 317–332 319
Section 3, we add XML variables. In Section 4, we
move on to semantical meta-querying. In Section
5, we describe how Meta-SQL can be implemented
using extensible database technology. We give
some experimental performance results of our
prototype in Section 6. In Section 7, we conclude
with a discussion of our approach.
query

select

sel-item

column

sel-item

aggregate alias

avg column-ref

column

from

table-ref

table

group-by

column-ref

column

director

rating

avgrat Movies Director
2. SQL + XSLT

Consider a standard relational database, except
that in a table some columns can be marked to be
of type ‘‘XML’’. In any row of that table, the
component corresponding to a column of type
XML holds an XML document. At the present
conceptual level, we do not yet care about how this
is implemented.

XSLT [5] is a widely used manipulation
language for XML documents. An XSLT program
takes an XML document as input, and produces
as output another XML document (which
could be in degenerate form, holding just a scalar
value like a number or a string). Using the XSLT
top-level parameter binding mechanism [5], pro-
grams can also take additional parameters as
input.3

Hence, to query databases containing XML, it
seems natural to extend SQL by allowing calls to
XSLT functions, in the same way as extensible
database systems extend SQL with calls to external
functions. However, in these systems, external
functions have to be precompiled and registered
before they can be used. In Meta-SQL, the
programmer merely includes the source of the
needed XSLT functions and can then call them
directly.

Let us see an example of all this, at the same
time applying it to meta-querying. Consider a
simplified system catalog table, called Views,
containing view definitions. There is a column
name of type string, holding the view name, and a
column def of type XML, holding the syntax tree
of the SQL query defining the view, in XML
format. For example, over a movies database,
3 In this paper, we cannot include a tutorial on XSLT, for

which we refer to the Web or to the literature [6,7].
suppose we have a view DirRatings defined as
follows:
select director, avg(rating) as avgrat

from Movies group by director
Then table Views would have a row with value for
name equal to ‘DirRatings’, and value for def

equal to the following XML document:

oquery>
F

i

oselect>
ig

ng
osel-item> ocolumn>directoro/column>
o/sel-item>

osel-item>
. 1

)

oaggregate>
. Synta

as avgr
oavg/>

ocolumn-ref> ocolumn>rating
o/column> o/column-ref>
o/aggregate>

oalias>avgrato/alias>
o/sel-item>

o/select>

ofrom>

otable-ref> otable>Movieso/table>
o/table-ref>
o/from>

ogroup-by>

ocolumn-ref> ocolumn>directoro/column>
o/column-ref>
o/group-by>

Fig. 1 shows the same document as a DOM tree
[8], which is perhaps clearer.

To achieve uniformity in the specific XML
format for representing SQL syntax trees, we must
agree on some fixed BNF syntax for SQL. A BNF
grammar can be easily transformed into an XML
DTD [9], which then specifies the XML format to
x tree of SQL query select director, avg(rat-

at from Movies group by director.

ARTICLE IN PRESS

J. Van den Bussche et al. / Information Systems 30 (2005) 317–332320
use. In this paper, we use the BNF grammar given
by Date [10]. The derived DTD is given in
Appendix A.

Now recall the first example meta-query from
the Introduction, but applied to our Views table:
‘‘which queries do the most joins?’’ For simplicity
of exposition, let us identify the number of joins an
SQL query does with the number of table names
occurring in it. To express this meta-query in
Meta-SQL, we write an auxiliary XSLT function
count tables, followed by an obvious SQL query
calling this function:

function count tables returns number

begin
oxsl:template match=00=00 >

oxsl:value-of select¼00count(//table)00= >
o/xsl:template>
end
select name from Views

where
4Parameters in XSLT are accessed by prepending them with

a $.
count tables(def) ¼ (select max

(count tables(def)) from Views)

The first line in the Meta-SQL program above
declares the XSLT function in Meta-SQL; between
begin and end one writes arbitrary XSLT code. Of
course, in general, Meta-SQL allows multiple
XSLT functions to be declared and called in the
SQL query that follows the function declarations.

XSLT programs execute by applying templates,
starting at the root of the input document. Every
template is associated with an XPath expression,
which specifies at what nodes in the input
document the template should be executed. The
XPath expression/associated with the only tem-
plate in the count tables function above specifies
that the template should be executed when we are
at the root of the input document. At that point,
we compute the set of all table subtrees by the //
table XPath expression, and compute the cardin-
ality of this set by the count function.

As a second example, suppose we are given a list
Removed of names of tables that are going to be
removed, and we want to know which views will
become invalid after this removal because they
mention one of these table names. To express this
meta-query in Meta-SQL, we write:

function mentions table param tname string

returns string

begin
oxsl:param name¼00tname00= >
oxsl:template match¼00 =00 >

oxsl:if test¼00//table[string(.)¼$tname]00 >
true
o/xsl:if>

o/xsl:template>

end
select name from Views, Removed

where mentions table(def, Removed.name) ¼
’true’

Here function mentions table takes, in addi-
tion to the input tree, an extra parameter tname of
type string. The line oxsl:param name-

¼00tname00= > brings this parameter inside the
execution environment of the XSTL program.
Again, our only template is executed when we are
at the root of the input document. At that point we
compute the set of all table subtrees whose string
value equals the tname parameter by the XPath
expression //table[string(.)=$tname].4 If this
set is non-empty then we output the string true.
Otherwise we do not generate any output,
implicitely returning the empty string.

As a final example, suppose we are given a
second view definitions table Views2, and for
every view name that is listed in both views tables,
we want a new definition that equals the union of
the first definition and the second definition. To
express this meta-query in Meta-SQL, we write:

function unite param v2 xml returns xml

begin
oxsl:param name¼00v200= >
oxsl:template match¼00 =00 >

ounion>

ARTICLE IN PRESS

J. Van den Bussche et al. / Information Systems 30 (2005) 317–332 321
oxsl:apply-templates/>

oxsl:apply-templates select¼00$v200= >
o/union>

o/xsl:template>
oxsl:template match¼00 �00 >

oxsl:copy> oxsl:apply-templates/>
o/xsl:copy>
o/xsl:template>
end
select name, unite(v.def,v2.def)

from Views v, Views2 v2

where v.name=v2.name

Here, the function unite returns XML and
takes, in addition to the input tree, an extra
parameter v2 of type XML. We have two
templates. The first template is executed at the
root of the input document, where we construct a
new document whose root is labeled with union.
The children of this root are computed by first
processing the rest of the input document, and
then processing the document found in v2. The
second template is executed at every node, where
we copy that node, and recursively process all its
children, effectively copying the entire tree of the
node under inspection to the output.
3. XML variables and XML aggregation

The simple combination SQLþXSLT is al-
ready quite useful, but its full potential is only
realized when we add a language construct that
allows us to extract the subelements of an XML
document. For example, the simple meta-query

give all pairs ðv; tÞ; where v is a view name and t

is a table name mentioned in the definition of
view v

is otherwise not expressible.
We therefore add XML variables to SQL: while

the standard SQL range variables range over the
rows of a table, XML variables range over the
subelements of an XML document. Like range
variables, XML variables are bound in the from-
clause, in a similar way variables are bound in
OQL [11] and in XQuery [3]. More specifically, an
XML variable x is bound in a from-clause using a
construct of the following form:

x in y½e�:

Here,

* y is a previously bound XML variable or a
column reference, or an XSLT function call, of
type XML; and

* e is an XPath expression [12] specifying which
subelements of y we want x to range over.

A bound XML variable can appear in an SQL
expression anywhere a column reference can.

For example, the meta-query quoted above can
now be expressed as follows:
function string value returns string

begin

end

select v.name, string value(x)

from Views v, x in v.def[//table]
Note that the body of function string value is
empty; indeed, the empty XSLT program does
exactly what we want here, namely, to return the
string value of an XML document (in this case, a
table subelement).

As another example, suppose we are given a log
table Log with stored queries (in a column Q), and
we want to identify ‘‘hot spots’’: subqueries that
occur as a subquery in at least ten different
queries. To express this meta-query, we write:
select s

from Log l, s in l.Q[//query]

group by s

having count(l.Q) >¼ 10
XML aggregation: XML variables allow us to
go from an XML document to a set of XML
documents. Conversely, we want to be able to go
from a set of XML documents to a single one.
Thereto, we add a natural aggregate function on
XML columns, called CMB (for ‘‘combine’’), also
used by Shanmugasundaram et al. [4]. Just like the

ARTICLE IN PRESS

J. Van den Bussche et al. / Information Systems 30 (2005) 317–332322
result of the standard aggregate function SUM on
a list of numbers x1;y;xn is the sum x1 þ?þ xn;
the result of CMB on a list of XML documents
d1;y; dn is the combined XML document

cmb

d1 . . . dn

So, the top-level element of CMBðd1;y; dnÞ is
always labeled ‘cmb’, and has the documents
d1;y; dn as its subelements.5

As an example, suppose we are given a view
definitions table Views3 similar to Views, except
that the same view name may appear with multiple
definitions. Suppose we want to ask the following
meta-query: for each view name, give the Carte-
sian product of its definitions. Thereto, we first
write an easy XSLT function cartprod (see
Appendix B) that transforms an input of the form
CMBðd1;y; dnÞ into the document

query

select

wildcard

from

table-ref

d1 dn

. . . table-ref

We then write:
select name, cartprod(CMB(def))

from Views3 group by name
As another example, recall the third example meta-
query from the Introduction: view expansion in
the log. To express this meta-query in Meta-SQL,
we first write two auxiliary XSLT functions (see
Appendix B).
5CMB is not commutative, so in the outcome of an XML

aggregation, the particular order of the grouped documents is

undetermined and will be implementation-dependent. Shanmu-

gasundaram et al. [4] consider an ordered version of CMB.
* pair, taking a string parameter s; and trans-
forming an input document d into the docu-
ment

pair

name

s

d

* rewrite, taking an XML parameter p of the
form

cmb

pair

name

s1

d1

. . . pair

name

sn

dn

where s1;y, sn are different strings and d1;
y, dn are arbitrary XML documents, and
transforming an input query q by replacing
every occurrence of an element of the form

table

si

by a copy of di:

We then write:

select rewrite(l.Q, (select CMB(pair(def,

name)) from Views)) from Log l
4. Semantical meta-querying

The language we have so far: SQL combined
with XSLT, and enriched with XML variables and
XML aggregation, gives us all the power we need
for ad-hoc syntactical meta-querying. We now
complete Meta-SQL so as to allow semantical

meta-querying as well.
To this end, we add a function EVAL for

dynamic evaluation of SQL queries. EVAL takes
an SQL query (more correctly, its syntax tree in
XML format) as input, and returns the table

ARTICLE IN PRESS

J. Van den Bussche et al. / Information Systems 30 (2005) 317–332 323
resulting from executing the query. A call to
EVAL can appear in an SQL expression anywhere
a table reference can; the resulting table can thus
be ranged over by a standard range variable.

As an example, suppose we are given a table
Customer with two attributes: custid of type
string, and query of type XML. The table holds
queries asked by customers to the catalogue of a
store. Every query returns a table with attributes
item, price, and possibly others. The following
meta-query shows for every customer the max-
imum price of items he requested:
select custid, max(t.price)

from Customer c, EVAL(c.query) t

group by custid
EVAL is all we need, provided we have enough
information about the output scheme of the stored
queries we are evaluating. For example, in the
previous meta-query, we are only interested in the
price attribute, and we know that every stored
query evaluates to a table that indeed has a price

column. But what if we are given an arbitrary
collection of stored queries without information
about their output schemes? They could even all
have different output schemes!

Such a situation neatly fits the genre known as
‘‘semistructured data’’ [13]: data that has a
structure (scheme), but we do not know it, and it
can be irregular. Since XML is the standard
format for semistructured data, and since we
already have XML variables in Meta-SQL, we
can easily solve the problem with an untyped
version of EVAL. This UEVAL function works
just like EVAL, except that the table resulting
from the dynamic evaluation of the query is
presented as a set of XML documents.

More concretely, suppose a particular stored
query evaluates to a table with attributes ðA;B;CÞ:
Then every output row ða; b; cÞ is represented as
the XML document

row

A

a

B

b

C

c

The resulting set of XML documents is ranged
over by an XML variable rather than a standard
range variable; this is a new use we make of XML
variables in the Meta-SQL language.

As a simple example, recall the second example
meta-query from the Introduction: ‘‘which queries
in the log return an empty answer?’’ To express
this meta-query, we write:
select Q from Log l

where not exists
(select x from x in UEVAL(l.Q))
Note that x is an XML variable, whereas t in
the previous example is a standard SQL range
variable.

The fourth example meta-query from the
Introduction (query comparison after view expan-
sion) is equally easy to express, given that we
already saw how to express view expansion in the
previous section. In particular, note that we can
apply EVAL and UEVAL not only to queries
directly stored in the database, but also to queries
coming from a syntactical meta-subquery (such as
view expansion).

As a last example, the meta-query: ‘‘for each
query in the log whose answer includes a price

column, give the maximum of that column’’ is
expressed as follows:

function get price returns number

begin
oxsl:template match¼00 =00 >

oxsl:value-of select¼00/row/price00= >
o/xsl:template>
end
function has price returns string

begin
oxsl:template match¼00 =00 >

oxsl:if test¼00/row/price00 >

true
o/xsl:if>

o/xsl:template>

end
select l.Q, max(get price(x))

from Log l, x in UEVAL(l.Q)

ARTICLE IN PRESS

J. Van den Bussche et al. / Information Systems 30 (2005) 317–332324
where has price(x) ¼ ’true’
group by l.Q

Run-time errors: Both EVAL and UEVAL expect
their input to be (the XML syntax tree of) a correct
SQL query. If that is not the case, we consider this
to be a programming error, and a run-time
exception will be raised. Moreover an application
of EVAL can still fail even if its argument is a
correct SQL query, namely, when the query result
does not have the expected columns.

Designing a meta-query language where dy-
namic evaluation of stored queries is statically
typed so as to be safe from such run-time errors is
possible [14], but leads to an overly restricted
formalism. In the design of Meta-SQL, we have
opted to prefer flexibility and expressive power
above static typing.
5. Implementation

Meta-SQL is entirely compatible with modern
SQL implementations offered by contemporary
extensible database systems. Extensible (also called
object-relational, or universal) database systems
[15] support user-defined data types for the
columns of tables, and allow user-defined func-
tions on these types to be called within SQL.
Meta-SQL program

Meta-SQL
compiler

function f returns xml
begin
 <xsl:template>
 ...
 </xsl:template>
end
...

select f(x)
from L,
 x in L.A[//query]

import com.icl.saxon.
public class XSLT_f
{
 ...
}

Java Wrapper

Meta-SQL
compiler select UDF_f(x.result)

from L,
 table(EXTRACT(L.A, ’/

SQL:1999 stateme

create function UDF_f(
returns XML
source ’XSLT_f.f’
language JAVA

External Function registrat

compilation
execution

Legend

Fig. 2. Implementin
Extensibility is now part of the new SQL:1999
standard, and the major commercial vendors are
aggressively moving to support it.

In Fig. 2 we illustrate the architecture of an
implementation of Meta-SQL, explained in more
detail in this section.

Implementing XML columns: To support XML
columns, it suffices to define a data type ‘XML’.
We could derive this type from the built-in type
CLOB (Character Large Object) and store XML
documents as texts, but we could also derive from
BLOB (Binary Large Object) and store XML
documents as binary encodings of their DOM tree
structures.

Implementing XSLT calls: Starting from Meta-
SQL source code, consisting of a number of XSLT
functions, followed by an SQL query using these
functions, the Meta-SQL compiler does the
following automatically:
(1)
*;

/quer

nt

XML)

ion sta

g M
For each XSLT function, it generates a
wrapper function (in an external programming
language such as C or Java) that invokes an
XSLT processor, thus performing the required
XSLT transformation on the arguments, and
returns the result. If necessary, this result is
converted to an SQL datatype like number or
string.
(2)
 All wrapper functions are compiled and put
together in an object library.
Java
compiler

Extensible
DBMS

y’)) x

Saxon XSLT
Library

Standard Meta-SQL functions
(EXTRACT, EVAL, UEVAL)

Code base

XSLT_f.class

Meta-SQL program result

tment

Executed by
Meta-SQL compiler

eta-SQL.

ARTICLE IN PRESS

J. Van den Bussche et al. / Information Systems 30 (2005) 317–332 325
(3)
 Every wrapper function is registered in the
database system (using SQL:1999 CREATE
FUNCTION statements).
(4)
 With the functions in place, the final Meta-
SQL query can now be executed literally by
the database system.
Almost all available XSLT processors provide
an interface to various programming languages,
and can be loaded together with the application
that invokes them. Hence, the compiled
wrapper functions can be loaded into the
database server together with the XSLT processor
functionality and executed as efficiently as
possible.

Implementing XML variables: Now the first and
the last step in the above plan become more
involved: in the first step, we must generate an
additional function EXTRACT; in the last step, we
must perform some rewriting on the SQL query.
We next explain this in a bit more detail.

To support the XSLT calls, we needed only
single-valued external functions: they return as
output only a single value, be it a string, a number,
or an XML document. To support XML vari-
ables, however, we need a set-valued external
function. Specifically, the Meta-SQL system pro-
vides a function EXTRACT, which takes an XML
document y and an XPath expression e as input,
and which returns the set of all subelements of y

that satisfy e: This set is returned as a one-column
table with attribute name result.

Every XML variable binding, say, x in y½e�; is
now rewritten by the Meta-SQL compiler into a
call EXTRACT(y;’e’). This call returns a table to
which x is again bound, but now x has become a
standard SQL range variable over the single
attribute result.

For example, recall the first example of
Section 3:
select v.name, string value(x)

from Views v, x in v.def[//table]
This query will be rewritten as follows:
select v.name, string value(x.result)

from Views v, table(EXTRACT(v.def,’//

table’)) x
The above from-clause contains two table
expressions. Note that the variable ranging over
the first table expression, namely v, is directly used
in the second table expression. This is an instance
of what SQL:1999 calls a ‘‘lateral derived table’’
[16]. Such lateral joins were not allowed in SQL-
92; we see that they are crucial here. We point out
that they were present in OQL from the outset [11].

Implementing EVAL and UEVAL: The function
UEVAL can, like EXTRACT, be realized as a set-
valued external function. This evaluation function
takes an SQL syntax tree in XML as input;
unparses it; sends the SQL query to the database;
receives the answer rows; transforms them into
XML as explained in the previous section; and
returns the results. The XML variable ranging
over the UEVAL result is handled in the same way
as above.

For example,
select Q from Log l

where not exists
(select x from x in UEVAL(l.Q))
is compiled into

select Q from Log l

where not exists
(select x.result from table(UEVAL(l.Q)) x)

The implementation of EVAL is a bit more
complicated, because EVAL returns not a set of
XML documents, but a normal SQL table ranged
over by a standard range variable. In this case, the
Meta-SQL compiler first determines the specific
attributes that are mentioned in connection with
this range variable. A specific table-valued external
function having this set of attributes as output
scheme is then generated and registered in the
database system. This evaluation function will
actually not send its exact argument SQL query to
the database for evaluation, but rather its projec-
tion on the output scheme in question.

For example, recall the first example of Section 4:
select custid, max(t.price)

from Customer c, EVAL(c.query) t

group by custid

ARTICLE IN PRESS

SELECT
CST

J. Van den Bussche et al. / Information Systems 30 (2005) 317–332326
To implement this query, the Meta-SQL system
will generate an evaluation function, say, EVAL 1,
with output scheme (price), and will rewrite the
query to

select custid, max(t.price)

from Customer c, table(EVAL 1(c.query)) t

group by custid

Here, EVAL 1ðqÞ; when called on any stored
query q; evaluates and returns the projection
ppriceðqÞ:

If the select-clause would have additionally
included sum(t.qty), then the system would have
generated a different evaluation function EVAL 2
with output scheme (price,qty) and according
behavior.

Implementing XML aggregation: The XML
aggregate function CMB introduced in Section 3
can be directly provided as a user-defined aggre-
gate function.

A Working Prototype: We have developed a
prototype implementation [17] on top of DB2
UDB [18], which we chose because it is freely
available to university research and teaching.

We implement the external XSLT wrapper
functions in Java, in conjunction with the popular
and free Java-based XSLT processor SAXON [19].
SAXON also provides a convenient Java-XML
interface making the EXTRACT function very
easy to write.6

Currently, DB2 only supports the extension of
existing aggregation operators, and not the defini-
tion of new ones. Therefore, we were unable to
implement the CMB aggregation operator.
10

20

30

Se
co

nd
s

MUL
CAP
6. Experimental performance evaluation

In this section we describe some performance
experiments on our prototype implementation.
Unless stated otherwise, the results shown are
6 IBM provides an ‘XML Extender’ to DB2 UDB which

already provides an XML data type (derived from CLOB as we

do), but with insufficient functionality for our needs. For

example, there is also an Extract function, but it is much weaker

than the EXTRACT function we need to implement our

mechanism of XML variables.
averages of multiple executions of the test under
discussion.

Java Overhead: Our first test measures the
overhead implied by calling external functions
written in Java. To that cause we created three
simple single-valued external functions, CST, MUL
and CAP, which respectively return a constant
number, multiply a number with a constant, and
transform the input string to capital letters. The
following four queries were executed:
select � from T

select CST(A), B from T

select MUL(A), B from T

select A, CAP(B) from T
Here, T consists of an integer column A and a
character column B. The first query is executed to
measure the time needed to select tuples from T

without calling an external function.
Fig. 3 shows the results for varying table sizes.

As was to be expected, the running times of all
functions grow linearly in the number of input
tuples. Since the time needed to execute the last
three queries closely resembles that of the first, we
may conclude that there is a minimal overhead
involved with external functions programmed in
Java.

XSLT Processor overhead: Our prototype im-
plements XSLT functions by external wrapper
functions calling the SAXON XSLT processor. To
0 5000 10000 15000 20000

Tuples

0

Fig. 3. Performance of external functions in Java.

ARTICLE IN PRESS

500

600

COPY
XSLT COPY

J. Van den Bussche et al. / Information Systems 30 (2005) 317–332 327
measure the startup cost of the XSLT processor,
we compared the Meta-SQL query
400

s

function XSLT CST returns number

begin
300on
d

c

oxsl:template match¼00 =00 >
0 500 1000

Tuples

0

100

200

300

400

500

600

700

Se
co

nd
s

CST
XSLT CST

Fig. 4. Performance of XSLT
Se
40513
200
o/xsl:template>

end
100
select XSLT CST(A) from T
0 200 400 600 800 1000

Nodes

0

Fig. 5. Performance of XSLT calls.
whose execution time is dominated by starting up
the XSLT processor, with the query
select CST(A) from T
Here, CST is single-valued external function
which also returns the same constant on all inputs.
Table T consists of a single XML column, whose
values are single-node trees.

Fig. 4 shows the results for varying table sizes.
The XSLT function running time is significantly
larger than that of CST, and grows linearly in the
number of input tuples, which indicates that there
is a constant startup cost imposed by the XSLT
processor. As such, a Meta-SQL implementation
would greatly benefit from more efficient XSLT/
XML processors.

A valid question to ask next is how the size of
the input XML document affects the running time
1500 2000

calls.
of an XSLT function. To this cause we compared
the following two queries:
select XSLT COPY(A) from T1

select COPY(A) from T1
Here, both XSLT COPY and COPY copy their input
to the output. The only difference is that XSLT
function XSLT COPY does so by XSLT template
matching whereas external function COPY performs
a true copy. Table T1 consists of a single XML
column A.

Fig. 5 shows the running times of these queries
on tables with 1000 documents, for varying
document sizes. Both running times grow linearly
when the number of nodes per tuple increases, as
was to be expected. Combined with the previous
results, this indicates that calling an XSLT
function has a rather large start-up cost, but a
relatively small execution cost.

Extract: As described in the Section 5, XML
variables are implemented by a set-valued external
function called EXTRACT. To see how set-valued
external functions compare with single valued
functions, we created a single-valued function
named SCALAR EXTRACT, which evaluates the
XPath expression/on its input, and executed the
following three queries:
select x from T, x in B[//�]
select x from T1, x in B[/]

select SCALAR EXTRACT(B) from T1

ARTICLE IN PRESS

J. Van den Bussche et al. / Information Systems 30 (2005) 317–332328
Here, T consists of an XML column B, which is
populated by 1000 documents of m nodes. Table
T1 contains the result of the first query. Hence, the
second and third query return the same output as
the first; here, the second query still uses an XML
variable, whereas the third query makes a direct
function call. The difference is that EXTRACT is
called 1000 times in the first query, each time
returning m tuples, whereas in the second and
third query EXTRACT and SCALAR EXTRACT are
called m � 1000 times, each call returning a single
tuple. Thus, this test compares the overheads
involved with set-valued functions returning multi-
ple tuples, set-valued functions returning a single
tuple, and single-valued functions returning a
single tuple.

We timed the execution for varying m; as shown
in Fig. 6. Due to the large running times, the test
was only timed once.

We can safely conclude that returning multiple
tuples from a set-valued function is not a problem.
Indeed, the running time of the first query is quite
reasonable and increases linearly with m (although
it appears constant in Fig. 6 due to the large
running times of the other queries). In particular,
it is multiple times faster than returning m times a
single tuple. As such, the implementation of XML
variables in our approach performs very reason-
ably.

Since both EXTRACT and SCALAR EXTRACT use
the XSLT processor to evaluate their XPATH
40 50 60 70 80 90 100

Nodes

0

10000

20000

30000

Se
co

nd
s

EXTRACT //*
EXTRACT /
SCALAR EXTRACT

Fig. 6. Performance of Extract—Experiment 1.
expressions and because the running time of the
second query resembles that of the third, we can
also conclude that the overhead of a set-valued
external function is about the same as that of a
single-valued one.

With the following two queries, we measure the
overhead of an EXTRACT call versus the actual
amount of work that needs to be done:
select x from T, x in B[//�]
select C from T, T2
Here, T is as before and T2 is the table with
XML column C, containing the result of the first
query on a single document in T. Since all
documents in T are the same, both queries return
the same result. By adding the time the XSLT
processor needs to evaluate the XPath expression
//� 1000 times to the timing of the second query,
we get an estimate of the time needed to calculate
the result of the first query, without actually
calling EXTRACT.

As can be seen from Fig. 7, the running time of
both queries grow linearly in their input. However,
the first query outperforms the second one when m

grows larger. Hence, although EXTRACT has some
startup overhead, it is efficient when applied to
large documents. Indeed, it even outperforms a
setting in which the same amount of work needs to
be done, but no call to a set-valued external
function is made. Combined with our previous
0 50 100 150 200 250 300

Nodes

0

100

200

300

400

500

600

Se
co

nd
s

EXTRACT //*

JOIN + PREPROC

Fig. 7. Performance of Extract—Experiment 2.

ARTICLE IN PRESS

J. Van den Bussche et al. / Information Systems 30 (2005) 317–332 329
results, this shows that XML variables are
efficiently implementable.

Conclusion: The experiments above indicate that
our proposal for implementing meta-querying
features on top of the database engine induces
constant, predictable overheads, which is certainly
good news.

Still, the running times are sometimes too high.
Therefore, more efficient XSLT processors would
certainly help. The ideal solution would be to
incorporate XSLT processing directly into the
query processor, as has recently been suggested by
Moerkotte [20]. It might also help to implement
the EVAL and UEVAL functions entirely in a
programmed SQL language such as Oracle’s PL/
SQL, or SQL/PSM, in which case the overhead of
calling a table function could be avoided.

On the other hand, our current implementation
method has the advantage that it is generally
applicable without a need to change the internal
query processor (which is often not feasible).
7. Discussion

Other meta-query languages: Meta-SQL is the
first practical language for meta-querying. At the
same time, however, it is firmly based on our past
experience in designing formalisms for meta-
querying. More specifically, two of us (in colla-
boration with Neven and Van Gucht) have earlier
introduced the reflective relational algebra [21] and
the meta relational algebra [14], two formal meta-
query languages based on the relational algebra
rather than on SQL. The two formalisms differ in
their approach: the reflective algebra is untyped,
stores queries in so-called ‘‘program relations’’,
and uses the basic relational algebra operators for
the syntactical manipulation; in contrast, the meta
algebra is statically typed and views stored queries
as an abstract data type with specific operations
for syntactical manipulation. Meta-SQL is the
practical culmination of these two proposals, and
stands in between the two approaches: like the
meta algebra, it stores queries in an XML abstract
data type, but like the reflective algebra, it is
essentially untyped. Every meta-query expressed in
the reflective relational algebra, or in the meta
relational algebra, can also be expressed in Meta-
SQL.

Schema querying: Starting with the seminal
paper on HiLog [22], the concept of schema

querying has received considerable attention in
the literature. Clearly, schema querying is a special
kind of meta-querying. For instance, SchemaSQL
[23] augments SQL with generic variables ranging
over table names, rows, and column names. It is
not difficult to simulate SchemaSQL in Meta-
SQL, using XML variables and UEVAL calls. Of
course, since SchemaSQL is more specialized, it
allows more opportunities for optimized imple-
mentation [24].

Commercial XML extensions: All the major
commercial ORDBMS vendors are providing
XML extensions to their products, However, the
emphasis there is mainly on publishing results of
SQL queries in XML format (e.g., [4,25]), so that
they can be further processed using the standard
XML tools, including XSLT. This combination of
SQL and XSLT is clearly quite different in scope
compared to the combination we have proposed in
this paper. The other direction, where large XML
documents are decomposed and stored in tabular
format, has also been researched (e.g., [26,27]) and
is getting into the commercial products.

We also mention that several features of ‘‘SQL/
XML’’ [28,29] such as the XML data type and the
mapping of tables to XML values are similar to
those found in this paper. Moreover, an Extract-
like operator and functions operating on XML
values (albeit through XQuery) are listed among
the future work.

Text extensions: Given that most database
systems now support a text data type with better
functions for text searching and editing than
standard SQL, one may wonder why we cannot
support meta-querying simply by representing the
stored queries as text. The answer is that for many
meta-queries the structure of the stored queries is
important. For example, searching for the use of a
certain view name in a query is more than a simple
pattern search. Using syntax trees and XSLT
makes structural querying very easy.

XML query languages: Although the focus of
this paper has been on meta-querying as opposed
to general XML querying, we still would like

ARTICLE IN PRESS

J. Van den Bussche et al. / Information Systems 30 (2005) 317–332330
to conclude by pointing out that Meta-SQL,
without EVAL, is not only a language for
syntactical meta-querying, but can serve in
general as a query language for databases
containing XML documents in addition to
ordinary relational data. Its closeness to standard
SQL and object-relational processing is a
major advantage. On the other hand, the treat-
ment of XML documents as abstract data
items seems less appropriate for ‘‘pure’’ XML
databases, i.e., huge XML documents. However,
as already indicated above, there seems to be a
strong trend in the database processing world to
decompose such XML databases into relational
data anyway.
Acknowledgements

We are indebted to Frank Neven and Dirk Van
Gucht for inspiring conversations. We also thank
our students Igor Kalders, Frank Pilgrim, Jef Vos,
and Dieter Vrancken for their help with the
prototype implementation.
Appendix A. A DTD for SQL

The following is a reasonably complete DTD for
syntax trees of SQL-92 select-statements, with the
exception of the various join operators. The DTD
is derived from the grammar given by Date [10].

o!ELEMENT query ((select, from, where?,

group by?, having?, order-by?)
| (union | except | intersect))>

o!ELEMENT select ((all | distinct)?,

(wildcard | sel-itemþ))>
o!ELEMENT all EMPTY>
o!ELEMENT distinct EMPTY>
o!ELEMENT wildcard EMPTY>
o!ELEMENT sel-item ((column |

(rangevar, (column | wildcard))
| scalar | aggregate), alias?)>

o!ELEMENT rangevar (#PCDATA)>
o!ELEMENT column (#PCDATA)>
o!ELEMENT column-ref (rangevar?, column)>
o!ELEMENT scalar (alg-exp |
concat-exp | column-ref | aggregate
| constant | query)>

o!ELEMENT aggregate (count-all
| ((avg | count | max | min | sum),

(all | distinct)?,
(alg-exp | concat-exp | column-ref |

constant | query)))>
o!ELEMENT count-all EMPTY>
o!ELEMENT avg EMPTY>
o!ELEMENT count EMPTY>
o!ELEMENT max EMPTY>
o!ELEMENT min EMPTY>
o!ELEMENT sum EMPTY>
o!ELEMENT alg-exp (scalar, (add | sub |

mul | div), scalar)>
o!ELEMENT add EMPTY>
o!ELEMENT sub EMPTY>
o!ELEMENT mul EMPTY>
o!ELEMENT div EMPTY>
o!ELEMENT concat-exp (scalar, scalar)>
o!ELEMENT constant (#PCDATA)>
o!ELEMENT from (table-refþ)>
o!ELEMENT table-ref ((table |

query), alias?)>
o!ELEMENT alias (#PCDATA)>
o!ELEMENT table (#PCDATA)>
o!ELEMENT where (cond-exp)>
o!ELEMENT cond-exp (not?, (cond-test |

and | or))>
o!ELEMENT not EMPTY>
o!ELEMENT cond-test (comparison | like |

in | match | all-or-any
| exists | unique | overlaps |

test-for-null)>

o!ELEMENT and (cond-exp, cond-exp+)>
o!ELEMENT or (cond-exp, cond-exp+)>
o!ELEMENT rowconstr (column-ref | scalar)

þ >
o!ELEMENT comparison

(rowconstr, (eq | lt | let | gt | get |

neq), rowconstr)>
o!ELEMENT eq EMPTY>
o!ELEMENT lt EMPTY>
o!ELEMENT let EMPTY>
o!ELEMENT gt EMPTY>
o!ELEMENT get EMPTY>
o!ELEMENT neq EMPTY>
o!ELEMENT like((column-ref | scalar),

ARTICLE IN PRESS

J. Van den Bussche et al. / Information Systems 30 (2005) 317–332 331
(column-ref | scalar)
, (column-ref | scalar)?)>

o!ELEMENT in ((rowconstr, query) |

(scalar, scalarþ))>
o!ELEMENT partial EMPTY>
o!ELEMENT full EMPTY>
o!ELEMENT match (rowconstr, unique?,

(partial|full)?, query)>
o!ELEMENT all-or-any (rowconstr,

(eq | lt | let | gt | get | neq)
, (all | any)?, query)>

o!ELEMENT any EMPTY>
o!ELEMENT exists (query)>
o!ELEMENT unique (query)>
o!ELEMENT overlaps (scalar, scalar,

scalar, scalar)>
o!ELEMENT test-for-null (rowconstr)>
o!ELEMENT group-by (column-refþ)>
o!ELEMENT having (cond-exp)>
o!ELEMENT union (query, all?, query)>
o!ELEMENT except (query, all?, query)>
o!ELEMENT intersect

(query, all?, query)>
o!ELEMENT order-by ((column-ref,

(asc | desc)?)þ)>
o!ELEMENT asc EMPTY>
o!ELEMENT desc EMPTY>
Appendix B. XSLT programs
function cartprod returns xml

begin
oxsl:template match¼00 =00 >

oquery>

oselect> owildcard/> o/select>

ofrom> oxsl:apply-templates

select¼00cmb/�00= > o/from>

o/query>
o/xsl:template>
oxsl:template match¼00/cmb/�00 >

otable-ref>
oxsl:copy-of select¼00 :00= >

o/table-ref>
o/xsl:template>
end
function pair param s string returns xml

begin
oxsl:param name¼00s00= >

oxsl:template match¼00/00 >

opair>

oname> oxsl:value-of select¼00s00= >
o/name>

oxsl:copy-of select¼00 �00= >
o/pair>

o/xsl:template>

end
function rewrite param p xml returns xml

begin
oxsl:param name¼00p00= >
oxsl:template match¼00 �00 >

oxsl:copy>

oxsl:apply-templates/>
o/xsl:copy>

o/xsl:template>
oxsl:template match¼00table00 >

oxsl:apply-templates select¼00$p00

mode¼00find00 >

oxsl:with-param

name¼00search00 select¼00string(.)00= >

oxsl:with-param name¼00caller00 >

oxsl:copy-of select¼00 :00= >
o/xsl:with-param>

o/xsl:apply-templates>
o/xsl:template>
oxsl:template match¼00 =00 mode¼00find00 >

oxsl:param name¼00search00= >

oxsl:param name¼00caller00= >

oxsl:param name¼00found00

select¼00cmb/pair[name¼$search]00= >

oxsl:choose>

oxsl:when test¼00$found00 >

oxsl:copy-of select¼00$found/query00= >
o/xsl:when>

oxsl:otherwise>

oxsl:copy-of select¼00$caller00= >
o/xsl:otherwise>

o/xsl:choose>
o/xsl:template>
end

ARTICLE IN PRESS

J. Van den Bussche et al. / Information Systems 30 (2005) 317–332332
References

[1] M. Stonebraker, et al., Extending a database system with

procedures, ACM Trans. Database Syst. 12 (3) (1987)

350–376.

[2] P. Bernstein, et al., The Asilomar report on database

research, SIGMOD Record 27 (4) (1998) 74–80.

[3] XQuery 1.0: an XML query language, W3C Working

Draft, www.w3.org.

[4] J. Shanmugasundaram, E. Shekita, et al., Efficiently

publishing relational data as XML documents, VLDB

J. 10 (2–3) (2001) 133–154.

[5] XSL transformations (XSLT) version 1.0, W3C Recom-

mendation 16 November 1999, www.w3.org.

[6] D. Tidwell, XSLT, O’Reilly & Associates, Sebastopol,

CA, 2001.

[7] M.H. Kay, XSLT Programmer’s Reference, Wrox Press,

2001.

[8] Document object model (DOM) level 2 core specification

version 1.0., W3C Recommendation 13 November 2000.

www.w3.org.

[9] Extensible markup language (XML) 1.0 (2nd edition),

W3C Recommendation 6 October 2000, www.w3.org.

[10] C.J. Date, A Guide to the SQL Standard, 4th Edition,

Addison-Wesley, Reading, MA, 1997.

[11] S. Cluet, Designing OQL: allowing objects to be queried,

Inf. Syst. 23 (5) (1998) 279–305.

[12] XML path language (XPath) version 1.0, W3C Recom-

mendation 16 November, 1999, www.w3.org.

[13] S. Abiteboul, P. Buneman, D. Suciu, Data on the Web:

From Relations to Semistructured Data and XML,

Morgan Kaufmann, Los Altos, CA, 2000.

[14] F. Neven, J. Van den Bussche, D. Van Gucht, G. Vossen,

Typed query languages for databases containing queries,

Inform. Syst. 24 (7) (1999) 569–595.

[15] M. Stonebraker, P. Brown, Object-relational DBMSs:

Tracking the Next Great Wave, Morgan Kaufmann, Los

Altos, CA, 1999.
[16] J. Melton, A. Simon, SQL:1999: Understanding Relational

Language Components, Morgan Kaufmann, Los Altos,

CA, 2001.

[17] Meta-SQL prototype, available at http://www.

luc.ac.be/theocomp/.

[18] D. Chamberlin, A Complete Guide to DB2 Universal

Database, Morgan Kaufmann, Los Altos, CA, 1998.

[19] M. Kay, SAXON: the XSLT processor, saxon.source-

forge.net.

[20] G. Moerkotte, Incorporating XSL processing into data-

base engines, VLDB 2002, pp. 107–118.

[21] J. Van den Bussche, D. Van Gucht, G. Vossen, Reflective

programming in the relational algebra, J. Comput. Syst.

Sci. 52 (3) (1996) 537–549.

[22] W. Chen, M. Kifer, D.S. Warren, HiLog: a foundation for

higher-order logic programming, J. Logic Programming 15

(3) (1993) 187–230.

[23] L.V.S. Lakshmanan, F. Sadri, I.N. Subramanian, Sche-

maSQL: a language for interoperability in relational multi-

database systems, VLDB 1996, pp. 239–250.

[24] L.V.S. Lakshmanan, F. Sadri, I.N. Subramanian, On

efficiently implementing SchemaSQL on an SQL database

system, VLDB 1999, pp. 471–482.

[25] M.F. Fernandez, D. Suciu, W.C. Tan, SilkRoute: trading

between relations and XML, Comput. Networks 33 (2000)

723–745 Proceedings WWW9.

[26] J. Shanmugasundaram, K. Tufte, C. Zhang, et al.,

Relational databases for querying XML documents:

limitations and opportunities, VLDB 1999, pp. 302–314.

[27] A. Deutsch, M.F. Fernandez, D. Suciu, Storing

semistructured data with STORED, SIGMOD 1999,

pp. 431–442.

[28] A. Eisenberg, J. Melton, SQL/XML and the SQLX

informal group of companies, ACM SIGMOD Record

30 (3) (2001) 105–108.

[29] A. Eisenberg, J. Melton, SQL/XML is making

good progress, ACM SIGMOD Record 31 (2) (2002)

101–108.

http://www.w3.org
http://www.w3.org
http://www.w3.org
http://www.w3.org
http://www.w3.org
http://www.luc.ac.be/theocomp/
http://www.luc.ac.be/theocomp/
http://saxon.sourceforge.net
http://saxon.sourceforge.net

	Towards practical meta-querying
	Introduction
	SQL + XSLT
	XML variables and XML aggregation
	Semantical meta-querying
	Implementation
	Experimental performance evaluation
	Discussion
	Acknowledgements
	A DTD for SQL
	XSLT programs
	References

