
Polymorphic Type Inference for the Named Nested

Relational Calculus

Jan Van den Bussche and Stijn Vansummeren∗

Abstract

The named nested relational calculus is the canonical query lan-
guage for the complex object database model and is equipped with a
natural static type system. Given an expression in the language, with-
out type declarations for the input variables, there is the problem of
whether there are any input type declarations under which the expres-
sion is well-typed. Moreover, if there are, then which are they, and
what is the corresponding output type for each of these? This problem
is solved by a logic-based approach, and the decision problem is shown
to be NP-complete.

1 Introduction

The named nested relational calculus (NNRC for short) is the canonical
query language for the nested relational or complex object data model [1,
9, 34]. It is the natural extension to nested relations of the relational alge-
bra and calculus, which form the basis of all contemporary database query
languages [1].

Expressions in the NNRC are not always defined on every input. For
example, the semantics of the expression x.A, which inspects the A attribute
of variable x, is only well-defined if x holds a record with an attribute A.
For this reason, the NNRC comes equipped with a static type system, which
ensures type safety in the sense that every expression which passes the type
system’s tests is guaranteed to be well-defined.

The basic operators of the NNRC are polymorphic. We can inspect the
A attribute of any record, as long as it has an attribute A. We can take
the cartesian product of any two records whose attribute sets are disjoint.
We can take the union of any two sets of the same type. Similar typing
conditions can be formulated for the other operators of the NNRC. When
combining operators into expressions, these typing conditions become more

∗Address: Hasselt University, Department WNI, Agoralaan, gebouw D, B-3590 Diepen-
beek, Belgium. Email: stijn.vansummeren@uhasselt.be

1

evolved. For example, for the expression

{(x× y).A | x ∈ R}

to be well-typed, R must have a set type containing the type of x; x and y
must have record types whose attribute sets are disjoint; and one of these
attribute sets must contain A.

A natural question thus arises: given an NNRC expression e, under
which assignments of free variables in e to types is e well-typed? And what
is the resulting output type of e under these assignments? In particular,
can we give an explicit description of the typically infinite collection of these
typings? This is nothing but the NNRC version of the classical type inference
problem. Type inference is an extensively studied topic in the theory of
programming languages [21, 25], and is used in industrial-strength functional
programming languages such as Standard ML [29] and Haskell [15].

Some expressions, for example ∅.A, are inherently untypable (i.e., these
expressions do not admit any typing). Checking typability of an NNRC ex-
pression is the analog in NNRC of type-checking in implicitly typed program-
ming languages with polymorphic type systems, such as ML. It is therefore
interesting to see if typability is a decidable problem for the NNRC. If so,
what is its complexity? It is already known for instance that typability for
the particular case of the relational algebra is NP-complete [31, 32]. Also,
it is P-complete for the simply typed lambda calculus [11] and Exptime-
complete for ML [16, 17].

In this paper, we propose an explicit description of the set of all possible
typings of an NNRC expression e by means of a conjunctive logical formula
ϕe, which is interpreted in the universe of all possible types. The formula
ϕe is efficiently computable from e. We proceed to show that the satisfia-
bility problem of such conjunctive formulas belongs to NP. Consequently,
typability for the NNRC is also in NP. Since the NNRC is an extension
of the relational algebra, for which typability is already NP-complete, this
thus shows that typability for the NNRC is not more difficult than for the
special case of the relational algebra.

In the theory of programming languages one also finds type inference and
type-checking algorithms for languages with sets and records, often in the
presence of even more powerful features such as higher order functions [10,
23, 26, 27, 28, 33]. Indeed, the polymorphic type system of the NNRC can
be encoded in the very general type inference framework of HM(X) [27, 28].
To our knowledge, however, we are the first to study the complexity of the
typability problem for the specific type system of the NNRC.

Our motivations for this work are largely the same as for the previous
work by one of us and Waller on the relational algebra [31]. We repeat some
of these here. The main motivation is foundational and theoretical; after
all, query languages are specialized programming languages, so important

2

ideas from programming languages should be applied and adapted to the
query language context as much as possible. However, we also believe that
type inference for database query languages is tied to the familiar principle
of “logical data independence”. By this principle, a query formulated on the
logical level must not only be insensitive to changes on the physical level,
but also to changes to the database schema, as long as these changes are to
parts of the schema on which the query does not depend. To give a trivial
example, the SQL query select * from R where A < 5 still works if we
drop from R some column B different from A, but not if we drop column A
itself. Turning this around, it is thus useful to infer, given a query, under
exactly which schemas (i.e., which types) it works, so that the programmer
sees to which schema changes the query is sensitive.

Some features of modern database systems seem to add weight to the
above motivation. Stored procedures [20] are 4GL and SQL code fragments
stored in database dictionary tables. Whenever the schema changes, some of
the stored procedures may become ill-typed, while others that were ill-typed
may become well-typed. Having an explicit logical description of all typings
of each stored procedure may be helpful in this regard. Models of semi-
structured data [7, 14] loosen (or completely abandon) the assumption of a
given fixed schema. Query languages for these models are essentially schema-
independent. Nevertheless, as argued by Buneman et al. [8], querying is
more effective if at least some form of schema is available, computed from
the particular instance. Type inference can be helpful in telling for which
schema a given query is suitable.

A second motivation for this work stems from the area of database
programming languages. A database programming language is a general-
purpose programming language featuring an integrated database query lan-
guage. The NNRC is, by design [6], a natural candidate for integration in a
functional programming language such as the simply typed lambda calculus
or ML. It is then an interesting question how this integration would affect
the complexity of type-checking. Our results imply for example that adding
the NNRC to the simply typed lambda calculus changes the complexity from
P-complete to at least NP-hard. We further discuss this issue in Section 5.

A final goal of our paper is to provide an elementary, self-contained
presentation of polymorphic type inference for the NNRC, accessible for
researchers in database query languages who may not be familiar with type
theory. For other work on database query languages related to typing issues,
see the references [2, 4, 5, 13].

Organization We introduce the named nested relational calculus and its
static type system in Section 2. In Section 3 we show that the set of all
typings of an expression can be described by a logical formula. We show in
Section 4 that satisfiability of such formulas is in NP, and provide concluding

3

discussions in Section 5.

2 Named Nested Relational Calculus

In this section we introduce the named nested relational calculus: its data
model, its syntax, its semantics, and its type system. We start with the
set-theoretic background used throughout this paper.

2.1 Set-theoretic background

We assume the reader to be familiar with the notions of union, intersection,
difference, and cartesian product of sets (denoted by X ∪ Y , X ∩ Y , X \ Y ,
and X ×Y respectively). We recall that two sets are considered to be equal
if they contain precisely the same elements, and that a set X is a subset of
a set Y (X ⊆ Y) if every element of X is also in Y .

We also recall that a mapping f from a set X to a set Y is a subset
of X × Y such that for every x ∈ X there exists exactly one y ∈ Y with
(x, y) ∈ f . In the following, we write f : X → Y to denote that f is a
mapping from X to Y and we write f(x) for the unique y assigned to x by
f . Finally, recall that the restriction of f to a set X ′ ⊆ X is the mapping
from X ′ to Y that equals f on all x ∈ X ′ (i.e., it is the mapping f ∩X ′×Y).

Note that, since mappings are sets, all notions about sets (such as union,
intersection, . . .) apply to mappings as well.

2.2 Data Model

We assume given a sufficiently large set {A,B, . . . } of attribute names. A
row over a set S is a mapping r from a finite set dom(r) of attribute names
to S. So, a row is a finite set of pairs. We write π̂A(r) for the restriction of r
to dom(r) \ {A}. We use an intuitive notation for rows, which we illustrate
with an example. If r is the row with domain {A,B,C} and r(A) = a,
r(B) = b, and r(C) = c, then we write r as {A : a,B : b, C : c}.

We also assume given a recursively enumerable set A = {a, b, . . . } of
atoms, which in practice will contain the usual data values such as integers,
strings, and so on. A value v is either an atom, a record [r] with r a row
over values, or a finite set of values. We will denote values by v and w, rows
over values by r and s, and finite sets of values by V and W . The natural
join [r] on [s] of two records is defined as follows:

[r] on [s] :=

{
{[r ∪ s]} if r(A) = s(A) for all A ∈ dom(r) ∩ dom(s)
∅ otherwise.

Note that, since r and s agree on their common attributes, r ∪ s is again a
mapping; hence r ∪ s is again a row and [r ∪ s] is indeed a record.

4

2.3 Syntax

We assume given a sufficiently large set X = {x, y, . . . } of variables. The
named nested relational calculus (NNRC for short) is the set of all expres-
sions generated by the following grammar:

e ::= x

| [] | [A : e] | e.A | e× e | e on e | π̂A(e)
| ∅ | {e} | e ∪ e |

⋃
e | {e | x ∈ e}

| e = e ? e : e

Here, e ranges over expressions, x ranges over variables, and A ranges over
attribute names. We view expressions as abstract syntax trees and omit
parentheses. The set FV (e) of free variables of an expression e is defined
as usual. That is, FV (x) := {x}, FV (∅) := ∅, FV ({e2 | x ∈ e1}) :=
FV (e1)∪ (FV (e2) \ {x}), and FV (e) is the union of the free variables of e’s
immediate subexpressions otherwise.

2.4 Semantics

Given values for its free variables, an expression evaluates to a new value.
That is, expressions denote partial mappings from contexts to values, where
a context is defined as follows.

Definition 1 (Context). A context σ is a mapping from a finite set of
variables dom(σ) to values. If e is an expression and dom(σ) is a superset of
FV (e), then we say that σ is a context on e. We will denote by x : v, σ the
context σ′ with domain dom(σ)∪ {x} such that σ′(x) = v and σ′(y) = σ(y)
for y 6= x.

The semantics of NNRC expressions is formally described by means of
the evaluation relation, as defined in Figure 1. Here, we write σ |= e ⇒ v
to denote that e evaluates to value v under context σ on e. In the rule for
e1 × e2, note that dom(r1) and dom(r2) are required to be disjoint. This
implies that r1 ∪ r2 is again a mapping and that [r1 ∪ r2] is a record. It is
easy to see that the evaluation relation is functional: an expression evaluates
to at most one value under a given context. The evaluation relation is not
total however. For example, if σ(x) is an atom, then x.A does not evaluate
to any value under σ, since we can only inspect the attributes of records.
Likewise, we can only concatenate disjoint records, join records, project out
attributes of records, take the union of sets, flatten a set of sets, and iterate
over sets. We will write e(σ) for the unique value v for which σ |= e⇒ v. If
no such value exists, then we say that e(σ) is undefined.

We note that the semantics of an expression only depends on its free
variables: if two contexts σ and σ′ on e are equal on FV (e), then σ |= e⇒ v
if, and only if, σ′ |= e⇒ v.

5

Variables

σ |= x⇒ σ(x)

Record operations

σ |= [] ⇒ [∅]
σ |= e⇒ v r = {A : v}

σ |= [A : e] ⇒ [r]
σ |= e⇒ [r] A ∈ dom(r)

σ |= e.A⇒ r(A)

σ |= e1 ⇒ [r1] σ |= e2 ⇒ [r2]
dom(r1) ∩ dom(r2) = ∅
σ |= e1 × e2 ⇒ [r1 ∪ r2]

σ |= e1 ⇒ [r1] σ |= e2 ⇒ [r2]
σ |= e1 on e2 ⇒ [r1] on [r2]

σ |= e⇒ [r] A ∈ dom(r)
σ |= π̂A(e) ⇒ [π̂A(r)]

Set operations

σ |= ∅ ⇒ ∅
σ |= e⇒ v

σ |= {e} ⇒ {v}
σ |= e1 ⇒ V1 σ |= e2 ⇒ V2

σ |= e1 ∪ e2 ⇒ V1 ∪ V2

σ |= e⇒ {V1, . . . , Vn}
σ |=

⋃
e⇒ V1 ∪ · · · ∪ Vn

σ |= e1 ⇒ V ∀v ∈ V : (x : v, σ) |= e2 ⇒ wv

σ |= {e2 | x ∈ e1} ⇒ {wv | v ∈ V }

Conditional test

σ |= e1 ⇒ v1 σ |= e2 ⇒ v2
σ |= e3 ⇒ v v1 = v2

σ |= e1 = e2 ? e3 : e4 ⇒ v

σ |= e1 ⇒ v1 σ |= e2 ⇒ v2
σ |= e4 ⇒ v v1 6= v2

σ |= e1 = e2 ? e3 : e4 ⇒ v

Figure 1: The evaluation relation for NNRC expressions.

6

Example 1. Let friends and John be two variables. Suppose that the
value of friends is a set of pairs of friends, as a set of records of the form
[{Name : a,Friend : b}] where Name and Friend are attributes. Suppose
also that the value of John is a name (an atom). The following expression
computes the set of all of John’s friends:⋃

{x.Name = John ? {x.Friend} : ∅ | x ∈ friends}.

Note 1. Although we have not included the analog of the relational algebra
renaming operation ρA/B, which renames the attribute A of a record to the
attribute B, such an operation is expressible in the NNRC. Indeed, ρA/B(x)
can be expressed as π̂A(x)× [B : x.A].

2.5 Type System

In order to ensure that an expression evaluates to a value for every input
context in a desired set of contexts, the NNRC comes equipped with a static
type system, which is defined as follows.

Definition 2 (Types). We assume given a finite set of base types. A type
is a finite mathematical object, inductively defined as follows:

• every base type is a type;

• if ρ is a row over types, then Record(ρ) is a type; and

• if τ is a type, then Set(τ) is a type.

(Recall that the notion of “row”, used in the second item above, was intro-
duced in Section 2.2). Two types τ and τ ′ are equal if they are the same
mathematical object, i.e.,

• if τ and τ ′ are the same base type; or

• if τ = Record(ρ) and τ ′ = Record(ρ′) with dom(ρ) = dom(ρ′) and
ρ(A) equal to ρ′(A) for every A ∈ dom(ρ); or

• if τ = Set(τ1) and τ ′ = Set(τ ′1) with τ1 equal to τ ′1.

Definition 3 (Denotation of types). Every type τ denotes a set of values
JτK, which is inductively defined as follows:

• for each base type, JτK is a set of atoms, which we assume given;

• for types of the form Record(ρ), JRecord(ρ)K is the set of all records
[r] with dom(r) = dom(ρ) and r(A) ∈ Jρ(A)K, for every A ∈ dom(r);
and

7

• for types of the form Set(τ), JSet(τ)K is the set of all finite sets over
JτK.

Definition 4 (Type assignment). A type assignment Γ is a mapping
from a finite set dom(Γ) of variables to types. We denote by x : τ,Γ the
type assignment Γ′ with domain dom(Γ) ∪ {x} such that Γ′(x) = τ and
Γ′(y) = Γ(y) for y 6= x. We extend J·K to type assignments in the canonical
way: JΓK is the set of all contexts σ such that dom(σ) = dom(Γ) and
σ(x) ∈ JΓ(x)K, for all x ∈ dom(Γ). Finally, if dom(Γ) ⊇ FV (e), then we say
that Γ is a type assignment on e.

The typing relation for the NNRC is defined in Figure 2. Here we write
Γ ` e : τ to indicate that expression e has type τ under type assignment
Γ on e. Note that e has at most one type under Γ, which can easily be
derived from Γ by applying the rules in an order determined by the syntax
of expression e. If Γ ` e : τ , then we call (Γ, τ) a typing of e.

We note that the type system is sound:

Proposition 1 (Soundness). Let e be an expression, let Γ be a type as-
signment on e, and let τ be a type. If Γ ` e : τ , then e(σ) is defined and
e(σ) ∈ JτK, for every σ ∈ JΓK.

The proof is by an easy induction on e. The type system is not “com-
plete” however: there are examples of e, Γ, and τ such that e(σ) ∈ JτK
for every σ ∈ JΓK, but yet Γ 0 e : τ . A simple example is the expression
e0 = ∅ ? [] : ∅ where e0 is an expression of set type that is actually un-
satisfiable (i.e., it returns the empty set on every input). Since satisfiability
of NNRC expressions is well-known to be undecidable, the above example
actually shows that the following problem is undecidable:

Input: e, Γ, τ
Decide: Is e(σ) ∈ τ for every σ ∈ Γ.

Consequently, a sound and complete type system for the NNRC does
not exist. In another paper [30] we have studied fragments of the nested re-
lational calculus where such type systems do exist. In the current paper, we
continue with the full language and the present type system which, though
necessarily incomplete, is still very natural.

3 Type Inference

In this section we show that we can describe the set of all typings of an
expression e by a logical formula. To this end, we first recall the definition
of many-sorted first-order logic [12].

8

Variables

Γ ` x : Γ(x)

Record operations

Γ ` [] : Record(∅)
Γ ` e : τ ρ = {A : τ}
Γ ` [A : e] : Record(ρ)

Γ ` e1 : Record(ρ1) Γ ` e2 : Record(ρ2)
dom(ρ1) ∩ dom(ρ2) = ∅

Γ ` e1 × e2 : Record(ρ1 ∪ ρ2)

Γ ` e1 : Record(ρ1) Γ ` e2 : Record(ρ2)
ρ1(A) = ρ2(A) for all A ∈ dom(ρ1) ∩ dom(ρ2)

Γ ` e1 on e2 : Set(Record(ρ1 ∪ ρ2))

Γ ` e : Record(ρ) A ∈ dom(ρ)
Γ ` e.A : ρ(A)

Γ ` e : Record(ρ) A ∈ dom(ρ)
Γ ` π̂A(e) : Record(π̂A(ρ))

Set operations

τ a type
Γ ` ∅ : Set(τ)

Γ ` e : τ
Γ ` {e} : Set(τ)

Γ ` e1 : Set(τ) Γ ` e2 : Set(τ)
Γ ` e1 ∪ e2 : Set(τ)

Γ ` e : Set(Set(τ))

Γ `
⋃
e : Set(τ)

Γ ` e1 : Set(τ1) x : τ1,Γ ` e2 : τ2
Γ ` {e2 | x ∈ e1} : Set(τ2)

Conditional test

Γ ` e1 : τ Γ ` e2 : τ Γ ` e3 : τ ′ Γ ` e4 : τ ′

Γ ` e1 = e2 ? e3 : e4 : τ ′

Figure 2: The typing relation for NNRC expressions.

9

3.1 Many-Sorted First-Order Logic

Signatures, terms, and formulas. A signature Σ over a set of sorts S is
a set consisting of (a possibly infinite number of) constant symbols, relation
symbols, and function symbols. Every constant symbol c has an associated
sort in S. Every relation symbol has an associated arity ς1× · · ·× ςn, where
every ςi is a sort in S and n > 0. Likewise, every function symbol has an
associated arity ς1 × · · · × ςn → ς0, where every ςi is a sort in S and n > 0.
We write c : ς to denote that c is a constant symbol of sort ς. We write
R : ς1×· · ·× ςn ∈ Σ to denote that R has arity ς1×· · ·× ςn. We use a similar
notation for function symbols.

For every sort ς ∈ S we assume given an infinite collection of variable
symbols of sort ς. Σ-terms are built from variable symbols, the constant
symbols in Σ, and the function symbols in Σ as follows: every variable sym-
bol x of sort ς is a Σ-term of sort ς, every constant symbol c : ς in Σ is a
Σ-term of sort ς, and if f : ς1 × · · · × ςn → ς0 is a function symbol in Σ and
t1, . . . , tn are Σ-terms of sort ς1, . . . , ςn respectively, then f(t1, . . . , tn) is a
Σ-term of sort ς0. Atomic Σ-formulas are formulas of the form R(t1, . . . , tn)
where R : ς1 × · · · × ςn is a relation symbol in Σ and t1, . . . , tn are Σ-terms
of sorts ς1, . . . , ςn respectively. First-order Σ-formulas are built up as usual
from the atomic Σ-formulas and the logical connectives ∧, ¬, and the exis-
tential quantifier ∃. We write FO(Σ) for the set of all first-order Σ-formulas.
With FV (ϕ) we denote the set of all variables that occur free (i.e., not in the
scope of some quantifier) in ϕ. Sometimes we write ϕ(x1, . . . , xn) to indicate
that FV (ϕ) ⊆ {x1, . . . , xn}. We say that ϕ is quantifier free if there is no
quantifier in ϕ (i.e., if ϕ is a Boolean combination of atomic Σ-formulas).

Structures, valuations, and satisfaction. A Σ-structure A is a map-
ping assigning to every sort ς ∈ S a set A(ς); to every constant symbol
c : ς ∈ Σ an element A(c) ∈ A(ς); to every relation symbol R : ς1 × · · · ×
ςn ∈ Σ a set A(R) ⊆ A(ς1) × · · · × A(ςn); and to every function symbol
f : ς1 × · · · × ςn → ς0 ∈ Σ a mapping A(f) : A(ς1)× · · · × A(ςn) → A(ς0).

An A-valuation is a mapping h from a finite set of variable symbols
dom(h) to

⋃
ς∈S A(ς). A-Valuations are extended to Σ-terms in the canon-

ical way: h(c) = A(c) and h(f(t1, . . . , tn)) := A(f)(h(t1), . . . , h(tn)). We
write x : a, h for the A-valuation h′ with domain dom(h) ∪ {x} such that
h′(x) = a and h′(y) = h(y) for y 6= x.

Let ϕ be a first-order Σ-formula and suppose that FV (ϕ) ⊆ dom(h).
We say that h satisfies ϕ in A, denoted by A |= ϕ(h), when:

• if ϕ is an atomic Σ-formula R(t1, . . . , tn), then (h(t1), . . . , h(tn)) ∈
A(R);

• if ϕ is of the form ϕ1 ∧ ϕ2, then A |= ϕ1(h) and A |= ϕ2(h);

10

• if ϕ is of the form ¬ϕ1, then A 6|= ϕ1(h); and

• if ϕ is of the form (∃x)ϕ1 with x a variable symbol of sort ς, then there
exists some a ∈ A(ς) such that A |= ϕ1(x : a, h).

3.2 Type Formulas

We will describe the set of all typings of an expression e by means of formulas
in FO(Στ). Here, Στ is defined as the signature over the sorts {type, row}
consisting of

• a constant symbol ε of sort row;

• a binary relation symbol = of arity type× type;

• a binary relation symbol ⊆ of arity row× row;

• a binary relation symbol # of arity row× row;

• a unary function symbol Set of arity type → type;

• a unary function symbol Record of arity row → type;

• for every attribute A, a unary function symbol A of arity type → row;
and

• a binary function symbol , of arity row× row → row.

We will interpret formulas in FO(Στ) in the many-sorted structure T where

• T (type) is the set of all types;

• T (row) is the set of all rows over types;

• T (ε) is the empty row;

• T (=) relates equal types (with equality between types as in Defini-
tion 2);

• T (⊆) relates ρ to ρ′ if ρ (as a mapping, i.e., a set of pairs) is a subset
of ρ′;

• T (#) relates ρ to ρ′ if dom(ρ) is disjoint with dom(ρ′);

• T (Set) maps τ to Set(τ);

• T (Record) maps ρ to Record(ρ);

• T (A) maps τ to the singleton row {A : τ}; and

• T (,) is the “assymetric” concatenation operation: it maps ρ and ρ′ to
the row that equals ρ on dom(ρ) and ρ′ on dom(ρ′) \ dom(ρ).

11

Definition 5 (Type formula). A type formula is a formula in FO(Στ)
built up from atomic formulas using only existential quantifiers and con-
junction.

Convention 1. It will be convenient to use the same set X from the syntax
of the NNRC as the set of variable symbols of sort type in FO(Στ). Vari-
able symbols of sort row in FO(Στ) will be denoted using letters from the
beginning of the Greek alphabet.

Example 2. The following is an example of a type formula.

ϕ(x, y) ≡ (∃α)(∃β)x = Record(α) ∧ y = Record(β)
∧ α # β ∧ (∃z)A(z) ⊆ α, β.

Evaluated on the structure T , ϕ defines the set of all pairs of record types
(x = Record(ρ1), y = Record(ρ2)) such that dom(ρ1) ∩ dom(ρ2) = ∅ and
A ∈ dom(ρ1) ∪ dom(ρ2).

Definition 6. A type formula ϕ is principal for an expression e if ϕ defines
the set of all typings of e. That is:

• ϕ contains no free variable symbols of sort row ;

• the free variable symbols of sort type in ϕ are the free variables of e,
plus one additional variable z; and

• Γ ` e : τ if, and only if, T |= ϕ(z : τ,Γ).1

Example 3. For a simple example, consider the expression e1 = x∪y. Then
the following is a principal type formula for e1:

(∃u)x = Set(u) ∧ y = Set(u) ∧ z = Set(u).

For a more complicated example, consider the expression:

e2 = {{[B : t.A]} ∪ {r × s} | t ∈ x on y}.

Then the following is a principal type formula for e2:

(∃α)(∃β)(∃µ)(∃ν)x = Record(α) ∧ y = Record(β) ∧ (∃β′)α ⊆ β, β′

∧ (∃α′)β ⊆ α, α′ ∧ r = Record(µ) ∧ s = Record(ν) ∧ µ # ν

∧(∃q)A(q) ⊆ α, β∧B(q) ⊆ µ, ν∧µ, ν ⊆ B(q)∧z = Set(Set(Record(B(q))))

1We remind the reader of our convention that the variables from the syntax of the
NNRC are used as variable symbols of sort type in FO(Στ). Hence, every type assignment
is a T -valuation.

12

Theorem 2. Every expression e has a principal type formula ϕe, of size
linear in the size of e, and computable from e in polynomial time.

Proof. Let e be an expression and let x1, . . . , xn be the free variables of e.
Let z be a variable different from x1, . . . , xn. We construct the principal
type formula ϕe(z, x1, . . . , xn) for e by induction on e.

• Case e = x. Note that, since x is the only free variable of e, a principal
type formula for e must have exactly two free variable symbols: x and
z. Since every typing of e is of the form (Γ,Γ(x)) and conversely every
(Γ,Γ(x)) is a typing of e, it suffices to define ϕe := (z = x).

• Case e = []. Note that, since e does not have any free variables, a
principal type formula for e must have only one free variable symbol:
z. Since every typing of e is of the form (Γ,Record(∅)) and every
(Γ,Record(∅)) is a typing of e, it suffices to define:

ϕe := z = (Record(ε)).

• Case e = [A : e′]. Note that every typing of e is of the form (Γ,
Record({A : τ)}). Moreover, since (Γ,Record({A : τ)}) is a typing
of e if, and only if, (Γ, τ) is a typing of e′, it suffices to define:

ϕe := (∃x0)ϕe′(x0, x1 . . . , xn) ∧ z = Record(A(x0)).

• Case e = e′.A. Since (Γ, τ) is a typing of e if, and only if, (Γ,
Record(ρ)) is a typing of e′ with ρ(A) = τ , it suffices to define:

ϕe := (∃x0)ϕe′(x0, x1 . . . , xn) ∧ (∃α)x0 = Record(A(z), α).

• Case e = e1 × e2. Let y1, . . . , yk be the free variables of e1 and let
y′1, . . . , y

′
l be the free variables of e2. Note that every typing of e is

of the form (Γ,Record(ρ)). Since (Γ,Record(ρ)) is a typing of e if,
and only if, there exist rows ρ1 and ρ2 such that (Γ,Record(ρ1)) is
a typing of e1; (Γ,Record(ρ2)) is a typing of e2; dom(ρ1) is disjoint
with dom(ρ2); and ρ = ρ1 ∪ ρ2, it suffices to define:

ϕe := (∃y0)ϕe1(y0, y1 . . . , yk) ∧ (∃α)y0 = Record(α)
∧ (∃y′0) ϕe2(y

′
0, y

′
1, . . . , y

′
l) ∧ (∃α′)y′0 = Record(α′)

∧ α # α′ ∧ z = Record(α, α′).

• Case e = e1 on e2. Let y1, . . . , yk be the free variables of e1 and let
y′1, . . . , y

′
l be the free variables of e2. Note that every typing of e is of

the form (Γ,Set(Record(ρ))). Since (Γ,Set(Record(ρ))) is a typing
of e if, and only if, there exist rows ρ1 and ρ2 such that (Γ,Record(ρ1))

13

is a typing of e1; (Γ,Record(ρ2)) is a typing of e2; ρ1(A) = ρ2(A) for
every A ∈ dom(ρ1) ∩ dom(ρ2); and ρ = ρ1 ∪ ρ2, it suffices to define:

ϕe := (∃y0)ϕe1(y0, y1 . . . , yk) ∧ (∃α)y0 = Record(α)
∧ (∃y′0) ϕe2(y

′
0, y

′
1, . . . , y

′
l) ∧ (∃α′)y′0 = Record(α′)

∧ (∃β′)α ⊆ α′, β′ ∧ (∃β)α′ ⊆ α, β

∧ z = Set(Record(α, α′)).

Indeed, the subformula (∃β′)α ⊆ α′, β′ ∧ (∃β)α′ ⊆ α, β ensures that
the rows held by α and β agree on the common attributes in their
domain.

• Case e = π̂A(e′). Note that every typing of e is of the form (Γ,
Record(ρ)). Since (Γ,Record(ρ)) is a typing of e if, and only if,
there exists a row ρ′ such that (Γ,Record(ρ′)) is a typing of e′ and
ρ = π̂A(ρ′), it suffices to define:

ϕe := (∃x0)ϕe′(x0, x1 . . . , xn) ∧ (∃α)x0 = Record(α)
∧ (∃β)(∃y)A(y) # β ∧ α ⊆ A(y), β ∧A(y), β ⊆ α

∧ z = Record(β).

Indeed, the subformula A(y) # β ∧ α ⊆ A(y), β ∧A(y), β ⊆ α ensures
that attribute A is not in the domain of the row held by β and that
the row held by α equals the row held by β on all other attributes.

• Case e = ∅. Note that, since e does not have any free variables, a
principal type formula for emust have only one free variable symbol: z.
Since every typing of e is of the form (Γ,Set(τ)) and conversely every
(Γ,Set(τ)) is a typing of e, it suffices to define ϕe := (∃y)z = Set(y).

• Case e = {e′}. Note that every typing of e is of the form (Γ,Set(τ)).
Since (Γ,Set(τ)) is a typing of e if, and only if, (Γ, τ) is a typing of
e′, it suffices to define:

ϕe := (∃x0)ϕe′(x0, x1, . . . , xn) ∧ z = Set(x0).

• Case e = e1 ∪ e2. Let y1, . . . , yk be the free variables of e1 and let
y′1, . . . , y

′
l be the free variables of e2. Note that every typing of e is of

the form (Γ,Set(τ)). Since (Γ,Set(τ)) is a typing of e if, and only if,
(Γ,Set(τ)) is a typing of e1 and (Γ,Set(τ)) is a typing of e2, it suffices
to define:

ϕe := (∃y0)ϕe1(y0, y1 . . . , yk) ∧ (∃y′0)ϕe2(y
′
0, y

′
1, . . . , y

′
l)

∧ y0 = y′0 ∧ z = y0 ∧ (∃x)z = Set(x).

14

• Case e =
⋃
e′. Note that every typing of e is of the form (Γ,Set(τ)).

Since (Γ,Set(τ)) is a typing of e if, and only if, (Γ,Set(Set(τ))) is a
typing of e′, it suffices to define:

ϕe := (∃x0)ϕe′(x0, x1, . . . , xn) ∧ (∃y)x0 = Set(Set(y)) ∧ z = Set(y).

• Case e = {e2 | x ∈ e1}. Let y1, . . . , yk be the free variables of e1 and
let x, y′1, . . . , y

′
l be the free variables of e2. Note that every typing of

e is of the form (Γ,Set(τ)). Since (Γ,Set(τ)) is a typing of e if, and
only if, there exists a type τ ′ such that (Γ,Set(τ ′)) is a typing of e1
and ((x : τ ′,Γ), τ) is a typing of e2, it suffices to define:

ϕe := (∃y0)ϕe1(y0, y1, . . . , yk) ∧ (∃x)y0 = Set(x)
∧ (∃y′0)ϕe2(y

′
0, x, y

′
1, . . . , y

′
l) ∧ z = Set(y′0).

• Case e = e1 = e2 ? e3 : e4. Let u1, . . . , uk be the free variables of
e1, let u′1, . . . , u

′
l be the free variables of e2, let y1, . . . , yp be the free

variables of e3, and let y′1, . . . , y
′
q be the free variables of e4. Note that

every typing of e is of the form (Γ, τ). Since (Γ, τ) is a typing of e if,
and only if, there exists a type τ ′ such that (Γ, τ ′) is a typing of e1
and e2 and (Γ, τ) is a typing of e3 and e4, it suffices to define:

(∃u0)ϕe1(u0, u1, . . . , uk) ∧ (∃u′0)ϕe2(u
′
0, u

′
1, . . . , u

′
l) ∧ u0 = u′0

∧ (∃y0)ϕe3(y0, y1, . . . , yp) ∧ (∃y′0)ϕe4(y
′
0, y

′
1, . . . , y

′
q) ∧ y′0 = y0

∧ z = y0.

Clearly, ϕe is of size linear in the size of e, and is computable from e in
polynomial time.

4 Typability

Some expressions, such as for example [].A, do not have any typing. We
will refer to such expressions as untypable.

Definition 7. An expression e is called typable if there exists a type assign-
ment Γ on e and a type τ such that Γ ` e : τ . Deciding whether a given
expression e is typable is called the typability problem.

Example 4. Some additional examples of untypable formulas are x ∪ x.A,
[A : x].B, and x.A on (x× [A : y]).

It follows from Theorem 2 that deciding whether an expression e is ty-
pable is equivalent to computing the principal type formula ϕe for e and

15

then deciding whether ϕe is satisfiable in T . We will now show that decid-
ing the latter is in the complexity class NP. Since ϕe is computable from
e in polynomial time, it then follows that the typability problem is also in
NP.

We first note that, since ϕe is a conjunctive formula, it is very easily put
in existential prenex normal form (∃x1) . . . (∃xn)ψ with ψ quantifier free.
Clearly, ϕe is satisfiable in T if, and only if, ψ is. We will therefore restrict
our attention to quantifier free type formulas.

Definition 8. The set Specattrs(ϕ) of a type formula ϕ is the set of at-
tributes A for which a term of the form A(t) occurs in ϕ.

Definition 9. The deep restriction ρ|S of a row over types ρ to a set of
attributes S is the row ρ′ with domain dom(ρ) ∩ S such that for each A ∈
dom(ρ) ∩ S, ρ′(A) is the deep restriction of the type ρ(A) to S. Here, the
deep restriction τ |S of a type τ to S is the type obtained from τ by deep-
restricting every row occurring in τ to S. So, this is a recursive definition.
In addition, we define the deep restriction h|S of a T -valuation h to S as
the T -valuation h′ such that h′(x) = h(x)|S for every x ∈ dom(h).

Lemma 3. If ϕ is a type formula and h is a T -valuation such that T |=
ϕ(h), then also T |= ϕ(h|Specattrs(ϕ)).

Proof. It is easy to see by induction on t that, for any term t in FO(Στ) we
have h|Specattrs(ϕ)(t) = h(t)|Specattrs(ϕ). The lemma then follows by an easy
induction on ϕ.

Theorem 4. Deciding satisfiability in T of a quantifier free type formula is
in NP.

Proof. Let ψ be a quantifier free type formula. Let, for every attribute name
A and every variable α of sort row in ψ, xα

A be a distinct type variable not
in ψ. An attribute assignment on ψ is a mapping f that assigns to each
variable α of sort row in ψ to a term in FO(Στ) of sort row of the form

A(xα
A), . . . , B(xα

B), ε

where {A, . . . , B} ⊆ Specattrs(ψ). Note that, in particular, the size of f
is polynomial in the size of ψ. Let ψf be the quantifier-free type formula
obtained from ψ by replacing each variable α of sort row in ψ by the term
f(α). Clearly, ψf can be computed from e in polynomial time.

We now claim that ψ is satisfiable in T if, and only if, there exists an
attribute assignment f on ψ such that ψf is satisfiable in T . Indeed, suppose
that ψ is satisfiable in T . By Lemma 3 there exists a valuation h of ψ such
that T |= ψ(h) and such that dom(h(α)) ⊆ Specattrs(ψ), for all variables α
of sort row in ψ. Then let f be the attribute assignment on ψ defined by

f(α) := A(xα
A), . . . , B(xα

B), ε

16

where dom(h(α)) = {A, . . . , B}. Let hf be the valuation on ψf which equals
h on type variables in ψ and for which hf (xα

A) = h(α)(A). It is easy to see
that T |= ψf (hf).

Conversely, suppose that there exists an attribute assignment f on ψ
such that ψf is satisfiable in T . Then let hf be a valuation of ψf such
that T |= ψf (hf). Let h be the valuation on ψ which equals hf on the
type variables in ψ and for which h(α) is the row ρ with domain {A, . . . , B}
where f(α) = A(xα

A), . . . , B(xα
B), ε such that ρ(A) = hf (xA

α). It is easy to
see that T |= ψ(h).

Hence, in order to check satisfiability of ψ, it suffices to guess an attribute
assignment on ψ (which is polynomial in the size of ψ) and check whether
ψf is satisfiable. The latter can be done in polynomial time, as we show in
the following theorem.

Theorem 5. Satisfiability in T of quantifier free type formulas without vari-
ables of sort row can be decided in polynomial time.

Proof. Let ψ be a quantifier free type formula without variables of sort row.
Since ψ is a conjunction of atomic formulas, we can view ψ as a set of atomic
formulas. Moreover, since there are no variables of sort row in ψ, we can
treat every term t of sort row in ψ as a row over terms of sort type. For
example, we can treat the term t = A(x), ε, B(y), A(z), ε, C(u) as the row
{A : x,B : y, C : u}. Likewise, we can treat the term t′ = ε as the empty
row. Then let ψ1 be the subset of ψ defined by

ψ1 := {u1 # u2 | (u1 # u2) ∈ ψ} ∪ {u1 ⊆ u2 | (u1 ⊆ u2) ∈ ψ}.

Let ψ2 be defined by

ψ2 := {t1 = t2 | (t1 = t2) ∈ ψ}
∪ {u1(A) = u2(A) | (u1 ⊆ u2) ∈ ψ and A ∈ dom(u1) ∩ dom(u2)}.

It is clear that ψ1 and ψ2 can be computed from ψ in polynomial time. Let us
call ψ1 consistent if for every u1 # u2 in ψ1 we have dom(u1)∩dom(u2) = ∅
and for every u1 ⊆ u2 we have dom(u1) ⊆ dom(u2).

We claim that ψ is satisfiable in T if, and only if, ψ1 is consistent and
ψ2 is satisfiable in T . Indeed, it is easy to see that if ψ is satisfiable, then
ψ1 must be consistent. Furthermore, if h is a valuation for which T |= ψ(h),
then h(t1) = h(t2) for every t1 = t2 in ψ and h(u1)(A) = h(u2)(A) for every
u1 ⊆ u2 in ψ and every A ∈ dom(u1) ∩ dom(u2). Hence, T |= ψ2(h).

Conversely, suppose that ψ1 is consistent and that ψ2 is satisfiable in
T . Let h be a valuation such that T |= ψ2(h). Then h(t1) = h(t2) for
every t1 = t2 in ψ. Furthermore, since dom(u1) ∩ dom(u2) = ∅ for every
u1 # u2 in ψ (as ψ1 is consistent), and since there are no variables of sort
row in ψ, it follows that dom(h(u1)) ∩ dom(h(u2)) = ∅ for every u1 # u2

17

in ψ. Finally, since dom(u1) ⊆ dom(u2) for every u1 ⊆ u2 in ψ (as ψ1 is
consistent) and since h(u1)(A) = h(u2)(A) for every A ∈ dom(u1)∩dom(u2)
(as T |= ψ2(h)), it follows that h(u1) ⊆ h(u2) for every u1 ⊆ u2 in ψ. Hence,
T |= ψ(h).

In order to check satisfiability of ψ, it hence suffices to check consistency
of ψ1 and satisfiability of ψ2. Consistency of ψ1 can clearly be checked
in polynomial time. We now show that satisfiability of ψ2 in T can also
be checked in polynomial time. Let ≺ be some arbitrarily fixed order on
the special attributes of ψ2. We assume without loss of generality that
every term of sort row in ψ2 is of the form A1(t1), A2(t2), . . . , Am(tm), ε with
A1 ≺ A2 ≺ · · · ≺ Am (as such terms can clearly be rewritten into this form
in polynomial time without affecting satisfiability otherwise). Note that ψ2

is simply a set of equations between terms of sort type. It is then easy to see
that checking satisfiability of ψ2 in T amounts to finding a substitution θ
of variables in ψ2 to terms in FO(Στ) of sort type such that θ(t1) and θ(t2)
are syntactically equal for every equation t1 = t2 in ψ2. Hence, satisfiability
of ψ2 reduces to finding a unifier of every equation in ψ2, which is known to
be decidable in polynomial time [3, 18, 24].

The complexity upper bound of NP provided by Theorem 4 is actually
tight:

Proposition 6. Typability for the NNRC is NP-complete.

Proof. Since typability of an expression e is equivalent to computing the
type formula ϕe for e and then deciding whether ϕe is satisfiable in T , it
follows from Theorems 2 and 4 that typability for the NNRC is in NP.

It is already known that typability for the relational algebra is NP-
complete [31, 32]. It is also well-known that the relational algebra can be
simulated in the NNRC [9, 34]. It is not difficult to see that this simulation
preserves typability. Hence, typability for the NNRC is also NP-complete.

By the reduction of typability of an NNRC expression to satisfiability in
T of a type formulas it also follows:

Corollary 7. Deciding satisfiability in T of a type formula is NP-complete.

5 Concluding Remarks

Simplification of principal type formulas. We have shown that the
set of all typings of an NNRC expression e can be explicitly described by a
conjunctive formula ϕe in FO(Στ), which is efficiently computable from e.
From a practical viewpoint our definition of a principal type formula is de-
ficient, however. Indeed, a principal type formula for a program is generally

18

expected to be a useful, concise, and easily understandable abstraction of
what the program does. For example, if we view the well-known type infer-
ence algorithm for the programming language ML in our setting, a principal
type formula is either either false (meaning the function whose type we are
infering is untypable) or of the form

(∃u1) . . . (∃um) z = t ∧ x1 = t1 ∧ · · · ∧ xn = tn.

Here, u1, . . . , um are variable symbols, and t, t1, . . . , tn are terms of sort type
built from u1, . . . , um. For such formulas it is easy to discern the kinds of
types that can be assigned to z, x1, . . . , xn. In contrast, we allow arbitrary
complex type formulas. Consider, for example, the principal type formula
for [C : x ∪ y] that is output by the inductive algorithm given in the proof
of Theorem 2:

ϕ1 ≡ (∃u0)(∃u1)u1 = x ∧ (∃u′1)u′1 = y ∧ u1 = u′1 ∧ u0 = u1

∧ (∃u2)u0 = Set(u2) ∧ z = Record(C(u2)).

The extra use of bound variables and equality predicates makes this formula
harder to understand than its equivalent ϕ2 in “ML normal form”:

ϕ2 ≡ (∃u2)z = Record(C(Set(u2))) ∧ x = Set(u2) ∧ y = Set(u2).

For presentation of principal type formulas to the programmer, we would
hence like to have a normal form that allows formulas like ϕ2, but avoids
needlessly complex formulas like ϕ1. Moreover, such a normal form should
come with a simplification algorithm that puts arbitrary principal type for-
mulas in this normal form.

The ML normal form given above does not suffice for this purpose, as
not all type formulas can be expressed in it. For example, a principal type
formula for x×y must express that the row of the record in x is disjoint with
the row of the record in y. Therefore, such a type formula must contain an
atomic formula of the form t1 # t2, which cannot occur in a type formula
in ML normal form. We could therefore generalize the ML normal form to

(∃u1) . . . (∃um) z = t ∧ x1 = t1 ∧ · · · ∧ xn = tn ∧ ψ.

Here, u1, . . . , um are variable symbols; t, t1, . . . , tn are terms of sort type
built from u1, . . . , um; and ψ is a quantifier free formula in FO(Στ) that
only contains atomic formulas of the form t′1 ⊆ t′2 and t′1 # t′2 such that
FV (ψ) ⊆ {u1, . . . , um}. We call ψ the constraint part.

It is not difficult to show that every principal type formula has an equiv-
alent formula in this form. Unfortunately, it is unsuitable for presentation
purposes, as it still allows arbitrary complex type formulas. For example,

19

the following principal type formula for [C : x ∪ y] has the above form, but
is as complex as ϕ1:

ϕ3 ≡ (∃u0)(∃u1)(∃u2)(∃u′1)z = Record(C(u0)) ∧ x = u1 ∧ y = u′1

∧A(u1) ⊆ A(u′1) ∧A(u0) ⊆ A(u1) ∧A(u0) ⊆ A(Set(u2)).

Indeed, here atomic formulas of the form t1 = t2 in ϕ1 are simply replaced
by atomic formulas A(t1) ⊆ A(t2), resulting in the same obfuscation. To
overcome a similar problem, Odersky, Sulzmann, and Wehr [22, 28] propose
to further restrict the constraint part ψ to be logically equation-free. A
formula is logically equation-free if only trivial equations are logically implied
by it. That is, for any two terms t1 and t2, if h(t1) = h(t2) for every valuation
h such that T |= ψ(h), then t1 should be syntactically equal to t2. This
restriction rules out ϕ3 above, since the constraint part

A(u1) ⊆ A(u′1) ∧A(u0) ⊆ A(u1) ∧A(u0) ⊆ A(Set(u2))

logically implies the equations u1 = u0, u0 = Set(u2), and so on. We cur-
rently do not know, however, if every principal type formula has an equiva-
lent formula in this restricted normal form, and, if so, if such an equivalent
formula is effectively computable.

Note that, even after simplification, principal type formulas may be quite
complex. For example, recall the expression e2 from Example 3:

e2 = {{[B : t.A]} ∪ {r × s} | t ∈ x on y}.

Then the following is a principal type formula for e2:

ϕ4 ≡ (∃α)(∃α′)(∃β)(∃β′)(∃µ)(∃ν)(∃q) z = Set(Set(Record(B(q))))
∧ x = Record(α) ∧ y = Record(β) ∧ r = Record(µ) ∧ s = Record(ν)

∧ α ⊆ β, β′ ∧ β ⊆ α, α′ ∧ µ # ν ∧A(q) ⊆ α, β

∧B(q) ⊆ µ, ν ∧ µ, ν ⊆ B(q).

Note that ϕ4 is of the restricted form proposed by Odersky, Sulzmann, and
Wehr, but is still complex. This complexity is entirely due to the complicated
typing rules for ×, on, and π̂A. This is not solely a deficiency in our approach:
other type systems treating such record operations [10, 22, 28] also suffer
from this problem.

Typing database programming languages. As we have already men-
tioned in the Introduction, our results on the complexity of typability can be
used to determine how the integration of the NNRC in an implicitly typed
functional programming language, such as the simply typed lambda calculus
or ML, affects the complexity of type-checking in this language. Adding the

20

NNRC to the simply typed lambda calculus for example changes the com-
plexity from P-complete to at least NP-hard. The type-checking problem
for ML is known to be Exptime-complete [16, 17]. Hence, our result that
type-checking the NNRC is NP-hard does not necessarily imply that type-
checking the integrated ML-NNRC is harder than type-checking ML. We
should note, however, that the Exptime-completeness for ML arises only
due to programs of a very particular form, which rarely occur in practice [19].
The ML type-checking algorithms therefore typically run in linear time in
practice [19]. The NP-hardness of type-checking in the NNRC on the other
hand arises in many expressions, due to many different reasons [32]. It is
therefore likely that type-checking the integrated ML-NNRC language will
in practice be slower than type-checking ML.

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations Of
Databases. Addison-Wesley, 1995.

[2] Suad Alagic. Type-checking OQL queries in the ODMG type systems.
ACM Transactions on Database Systems, 24(3):319–360, 1999.

[3] Franz Baader and Wayne Snyder. Unification theory. In Handbook of
Automated Reasoning, pages 445–532. Elsevier and MIT Press, 2001.

[4] Herman Balsters, Rolf A. de By, and Roberto Zicari. Typed sets as
a basis for object-oriented database schemas. In ECOOP’93 - Object-
Oriented Programming, volume 707 of Lecture Notes in Computer Sci-
ence, pages 161–184. Springer, 1993.

[5] Catriel Beeri and Tova Milo. Subtyping in OODBs. Journal of Com-
puter and System Sciences, 51(2):223–243, 1995.

[6] Val Breazu-Tannen, Peter Buneman, and Limsoon Wong. Naturally
embedded query languages. In Proceedings of the 4th International Con-
ference on Database Theory, Berlin, Germany, October 1992, volume
646 of Lecture Notes in Computer Science, pages 140–154. Springer-
Verlag, 1992.

[7] Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu.
A query language and optimization techniques for unstructured data.
SIGMOD Record, 25(2):505–516, 1996.

[8] Peter Buneman, Susan B. Davidson, Mary F. Fernandez, and Dan Su-
ciu. Adding structure to unstructured data. In Foto N. Afrati and
Phokion Kolaitis, editors, Database Theory—ICDT’97, 6th Interna-
tional Conference, volume 1186, pages 336–350, Delphi, Greece, 1997.
Springer.

21

[9] Peter Buneman, Shamim A. Naqvi, Val Tannen, and Limsoon Wong.
Principles of programming with complex objects and collection types.
Theoretical Computer Science, 149(1):3–48, 1995.

[10] Peter Buneman and Atsushi Ohori. Polymorphism and type inference
in database programming. ACM Transactions on Database Systems,
21(1):30–76, 1996.

[11] Cynthia Dwork, Paris C. Kanellakis, and John C. Mitchell. On the se-
quential nature of unification. Journal of Logic Programming, 1(1):35–
50, 1984.

[12] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic
Press, 2001. Second Edition.

[13] Mary F. Fernández, Jérôme Siméon, and Philip Wadler. A semi-monad
for semi-structured data. In Database Theory - ICDT 2001, volume
1973 of Lecture Notes in Computer Science, pages 263–300. Springer,
2001.

[14] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajararnan,
Y. Sagiv, J. Ullman, V. Vassalos, and J. Widom. The tsimmis ap-
proach to mediation: Data models and languages. Journal of Intelligent
Information Systems, (8):117–132, 1997.

[15] Simon Peyton Jones. Haskell 98 Language and Libraries. Cambridge
University Press, 2003.

[16] Paris C. Kanellakis, Harry G. Mairson, and John C. Mitchell. Unifica-
tion and ML-type reconstruction. In Computational Logic - Essays in
Honor of Alan Robinson, pages 444–478. MIT Press, 1991.

[17] Harry G. Mairson. Deciding ML typability is complete for determin-
istic exponential time. In Proceedings of the 17th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM
Press, 1990.

[18] Alberto Martelli and Ugo Montanari. An efficient unification algo-
rithm. ACM Transactions on Programming Languages and Systems,
4(2), 1982.

[19] David A. McAllester. Joint rta-tlca invited talk: A logical algorithm
for ml type inference. In Rewriting Techniques and Applications, 14th
International Conference, RTA 2003, Valencia, Spain, June 9-11, 2003,
Proceedings, volume 2706 of Lecture Notes in Computer Science, pages
436–451. Springer, 2003.

22

[20] Jim Melton. Understaning SQL’s Stored Procedures. Morgan Kauf-
mann, San Mateo, CA, USA, 1998.

[21] John C. Mitchell. Foundations for Programming Languages. MIT Press,
1996.

[22] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference
with constrained types. Theory and Practice of Object Systems, 5(1):35–
55, 1999.

[23] Atsushi Ohori. A polymorphic record calculus and its compila-
tion. ACM Transactions on Programming Languages and Systems,
17(6):844–895, 1995.

[24] Mike S. Paterson and Mark N. Wegman. Linear unification. Journal of
Computer and System Sciences, 16:158–167, 1978.

[25] Benjamin C. Pierce. Types and Programming Languages. MIT Press,
2002.

[26] Didier Rémy. Type inference for records in a natural extension of ML.
In Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects Of
Object-Oriented Programming. Types, Semantics and Language Design.
MIT Press, 1993.

[27] Martin Sulzmann. A General Framework for Hindley/Milner Type Sys-
tems with Constraints. PhD thesis, Yale University, 2000.

[28] Martin Sulzmann. A general type inference framework for Hind-
ley/Milner style systems. In Functional and Logic Programming:
FLOPS 2001, volume 2024 of Lecture Notes in Computer Science, pages
248–263. Springer-Verlag, 2001.

[29] Jeffrey D. Ullman. Elements of ML Programming, ML97 Edition.
Prentice-Hall, 1998.

[30] Jan Van den Bussche, Dirk Van Gucht, and Stijn Vansummeren. Well-
definedness and semantic type-checking in the nested relational calculus
and xquery. In Database Theory - ICDT 2005, volume 3363 of Lecture
Notes in Computer Science, pages 99–113. Springer, 2005.

[31] Jan Van den Bussche and Emanuel Waller. Polymorphic type inference
for the relational algebra. Jounal of Computer and System Sciences,
64:694–718, 2002.

[32] Stijn Vansummeren. On the complexity of deciding typability in the
relational algebra. Acta Informatica, 41(6):367–381, 2005.

23

[33] Mitchell Wand. Type inference for record concatenation and multiple
inheritance. Information and Computation, 93(1):1–15, 1991.

[34] Limsoon Wong. Querying nested collections. PhD thesis, University of
Pennsylvania, 1994.

24

