
An Extension of Path Expressions to Simplify

Navigation in Object�Oriented Queries

Jan Van den Bussche�

University of Antwerp

Gottfried Vosseny

University of Muenster

Abstract

Path expressions� a central ingredient of query languages for object�
oriented databases� are currently used as a purely navigational vehicle�
We argue that this does not fully exploit their potential expressive power
as a tool to specify connections between objects� In particular� a user
should not be required to specify a path to be followed in full� but rather
should provide enough information so that the system can infer missing
details automatically� We present and study an extended mechanism for
path expressions which resembles the omission of joins in universal rela�
tion interfaces� The semantics of our mechanism is given in the general
framework of a calculus�like query language� Techniques from semantic
query optimization are employed to obtain e�cient speci�cations� We
also consider the possibility that links can be traversed backwards� which
subsumes previous proposals to specify inverse relationships at the schema
level and also fully exploits the meaning of inheritance links�

� Introduction

Query languages for object�oriented databases �OODBs� have become an active
�eld of research in recent years ��� ��	� with a central topic being the design
of languages that are at the same time easy to use and powerful
 Since it is
common in OODBs that objects directly reference each other� query languages
for such databases require some form of navigation� which is usually provided by
means of path expressions �PEs� ���	
 When PEs are used� establishing a desired
navigation path may be a complex task� for example due to the requirement that
correct typing must be obeyed along the path


The goal of this paper is to demonstrate that various simpli�cations are
possible when navigating through an OODB
 The idea of simplifying �logical�
navigation goes back to work on universal relation �UR� interfaces ��� 
� �
� ��	


�Research Assistant of the NFWO� Address� Dept� Math� � Computer Sci�� University of
Antwerp �UIA�� Universiteitsplein �� B��	�
 Antwerp� Belgium� E�mail� vdbuss�uia�ac�be

yAddress� Institut f�ur Wirtschaftsinformatik� University of Muenster� Grevenerstr� 
�� D�
����
 Muenster� Germany� E�mail� vossen�informatik�rwth�aachen�de



There� the issue was to free users from the need to write down complex join
expressions when querying a database� instead� they pose queries in terms of
attributes alone� and the query processor has to expand this into an ordinary
query� say� in relational algebra
 Moreover� in ��	 it has been shown how the UR
model can be extended such that inheritance and aggregation information can
be used to exploit attribute �compatibility�� and how a UR query language can
be provided with path expressions correspondingly


Since PEs in an OODB can be viewed as collections of implicit �pre�computed�
joins� it is natural to investigate the problem of simplifying logical navigation
in this context as well
 A �rst approach in this direction has been reported in
��	� where the UR query language PIQUE ��
	 was adapted to the context of
a semantic data model
 ���	 suggests to allow �wildcards� as abbreviations in
PEs� which may be replaced by a sequence of attributes


In the present paper� we will present a general abbreviation mechanism for
PEs �without wildcards� which allows them to be speci�ed more concisely
 In
particular� attributes may be omitted from the speci�cation of a PE� and links
between classes may be traversed in their given or in their inverse direction
 In
addition� our PEs can contain not only attribute names� but also class names

This renders them powerful enough to serve not only as where�clause speci��
cations� but also as for�clause speci�cations �using SQL terminology�
 Indeed�
in our approach to path expressions the distinction between where� and from�
clauses becomes obsolete


Abbreviated PEs are evaluated by �completing� them into so�called full ones

Completions will be inferred using knowledge of the inheritance and aggregation
links from the underlying database schema
 To this end� we associate with a
schema a directed graph whose edges represent those links and are assigned
weights based on a notion of �conceptual distance
� This renders it possible to
infer and disambiguate what a user has in mind by assuming that he is aiming for
the shortest connection between data objects that is implied by his expression


If several shortest paths exist� we take the union of them� inspired by the
credulous approach in AI
 In this process� we can avoid combinatorial explosion�
a typical drawback of the credulous approach�by employing techniques from
semantic query optimization ��	
 Our credulous approach will also turn out to
have the liberal typing for PEs� introduced in ���	� as a special case
 Note also
the similarity in spirit with the window function for UR interfaces proposed in
��	


The core of our abbreviation mechanism will be described in the general
framework of an object�oriented calculus�like query language
 The formal se�
mantics of this language is speci�ed by a translation to the conventional rela�
tional calculus �using an obvious relational representation of an OODB�
 In this
way� all semantical properties known of the relational calculus become readily
accessible �e
g
� for evaluation and optimization purposes�
 In particular� the
implicit joins expressed by a PE are made explicit by the translation
 Because
our object�oriented calculus is so simple and general� it will be straightforward
to incorporate our ideas into other query languages




The organization of this paper is as follows� In Section �� we introduce our
model of OODBs� and motivate our work by discussing various shortcomings in
the usage of traditional PEs in object�oriented query languages
 In Section �� we
de�ne the weighted schema graph corresponding to an object�oriented schema�
using a relational representation of OODBs
 In Section �� we introduce our ex�
tended notion of PEs and study ways of automatically expanding abbreviations
into full speci�cations
 In Section 
 we exhibit a general framework for calculus�
like query languages in which our PE mechanism can be used
 We give formal
semantics by a translation to relational calculus
 This translation is shown to be
safety�preserving
 Finally� in Section �� we brie�y discuss a number of further
issues that follow from our work
 We go deeper into the matter of traversing ag�
gregation links backwards �which we omit from the main formal development for
clarity of presentation�� and show how our results can be carried over into this
more general setting
 We also comment on the complexity of our abbreviation
mechanism


� Motivation

To motivate our investigation� we �rst review the traditional notion of path
expression as underlying most query languages for OODBs ���	
 We indicate
several shortcomings of the common usage of PEs� and show how these can be
overcome
 To make the presentation easier to read� we �rst sketch our OODB
model and present a running example


Following ORION ���	� we assume that an OODB schema consists of a set of
class names which are organized in an isa hierarchy
 The classes are connected
via aggregation links by associating with each class name a number of attribute
declarations which are �local� to that class
 Since we do not consider attribute
overriding in this paper� we assume that if c isa c�� then the sets of attributes
speci�ed for c and c� are disjoint
 Of course� c will inherit all attributes from c�


Each attribute has an arbitrary class name as type and an indication whether
it is single� or set�valued
 The type of an attribute is the class to which values
of the attribute belong
 Classes can be system�de�ned �e
g
� Integer� String� or
user�de�ned
 We will focus on user�de�ned classes in this paper
 Objects have a
unique identi�er and a possibly complex value consisting of all attribute values

For simplicity� we do not distinguish between attributes and �side�e�ect free�
methods
 This implies that we only consider methods without parameters� the
generalization to methods with parameters is well�known and straightforward
�e
g
� ���	�
 Throughout this paper� we will use an abbreviated version of an
example from ���	 as our running example
 The sample schema is depicted in the
usual graphical way in Figure �
 In this �gure� single arrows denote aggregation
links and double arrows is�a links� and a star indicates that the attribute in
question is set�valued


Traditionally �e
g
� ��	�� a path expression �PE� over a given OODB schema is
an expression of the form x�A��A�� � � � �An� n � �� where x is a variable standing
for an object of class C�� A� is an attribute of that class� and for � � i � n� Ai



Vehicle

model� String

manufacturer

color� String

Company

name� String

headquarter

divisions�

president

Person

name� String

age� Integer

residence

ownedVehicles�

Automobile

drivetrain

body� String

VehicleDrivetrain

engine

transmission� String

Division

name� String

location

manager

employees�

Employee

quali�cations� �String

salary� Integer

familyMembers�

Address

street� String

city� String

���
���

������
��

��
����

�
�
�
�
���

PistonEngine

hp� Integer

cc� Integer XXX
XXXXy

S
S
S
S
Sw

S
S
S
S
Sw

��

e
e
e
�
�
���

HHHHHHHHHj

�
	

�




�
�

�
���




Figure �� OODB schema of the running example




is an attribute of class Ci� being the type of attribute Ai�� in class Ci��

This de�nition has several immediate consequences� which impose unneces�

sary limitations on the usage of PEs in queries
 First� PEs have to be speci�ed
�in full�� i
e
� it is not allowed that a sequence A��A�� � � � �An of attributes is in�
terrupted at any point
 For example� if we ask for the cc value of an automobile
x� we would have to use x
drivetrain�engine�cc
 However� there is just one �and
minimal� way to connect an automobile to a cc value� so that a PE like x
cc suf�
�ces in principle
 Note that this situation is comparable to the one where we ask
for the color of automobile x
 Traditionally� object�oriented systems allow to use
x�color for this purpose� although formally� color is a property of vehicles� not
of automobiles
 Nevertheless� the system can infer that the required connection
is correct using the schema information on the inheritance link between the two
classes involved
 It follows that traditional PEs require a full speci�cation unless
a case of inheritance is involved� which results in an unsymmetric treatment of
inheritance and aggregation links� we will demonstrate below that this is not
necessary


To illustrate a second limitation of traditional path expressions� consider the
query asking for all cc values of automobiles owned by employees
 In XSQL ���	�
a recently proposed query language which provides one of the most complete
treatments of PEs to date� this query can be formulated as follows �recast into
a calculus�like syntax here��

fz j ��x � Employee�x����y � Automobile�y�� �
�x	�ownedVehicles �y	�drivetrain �engine �cc�z	g

Note the use of variables within the PE in the form of selectors� which was one
of the main contributions of XSQL
 Nevertheless� the above query formulation
is still far from perfect
 For example� the only use of variable y is to provide the
link between �owned�Vehicle and drivetrain� Indeed� formally vehicles do not
necessarily have an engine� while automobiles do� the �y	�selector enforces the
additional requirement that the vehicle must actually be an automobile
 It turns
out that this trick can be performed automatically by the system in much the
same way as the path abbreviation illustrated previously
 It su�ces to extend
the notion of path expression to allow not only attribute names� but also class
names to bind the objects participating in the path
 This would lead to

fz j ��x � Employee�x�� � �x	�ownedVehicles �Automobile �drivetrain �engine �cc�z	g�

But clearly� we can do away with the x variable in the same way� yielding

fz j Employee �ownedVehicle �Automobile �drivetrain �engine �cc�z	g�

Finally� basing ourselves on the observation �similar to an earlier one� that there
is only one minimal way to connect employees to cc values� we can as well write�

fz j Employee �cc�z	g�

Our exposition below will demonstrate that this e�ect can formally be made
precise
 We also point out that a side�e�ect of the extension to allow class



names inside path expressions is that the distinction between from� and where�
clause speci�cations �using SQL terminology� becomes obsolete� in the sense
that a quali�cation such as Employee�x� is equivalent to the PE Employee �x	
�which could occur as a subexpression of a larger PE�


As a �nal remark� the reader may have noticed that in the above discussion�
we have implicitly considered inheritance links to be bidirectional� e
g
� going
from Automobile to Vehicle in the �rst example� and conversely in the second

Again� there is no reason why this should not hold for aggregation links as
well
 Indeed� several proposals have recently been made regarding this point
���� ��� ��	
 A general discussion on the impact of �inversion� in path expressions
will be delayed to Section �
 Until then� it su�ces to say that an inversion
mechanism will be easily incorporable in our proposal as described in the sequel


� Schema Graphs and Schema Paths

Given a schema in the model introduced in the previous section� a weighted
graph can be associated with it whose edges capture the various inheritance and
aggregation links comprised
 We next introduce a simple and straightforward
representation of the OODB model by the relational model
 Using this rep�
resentation we will be able to use well�understood terminology to describe the
semantics of PEs


It is well�known ���	 how an OODB schema S can be represented by a rela�
tional database schema D�S�� consisting of unary and binary relation schemas�
and a number of constraints� this representation is only used for formal or con�
ceptual purposes and is implementation�independent
 Unary relations hold the
oid�s associated with each class� while binary relations consist of an oid column
plus one of the attributes of the corresponding class
 Hence� for each class name
c� there is a relation named c with c as the only attribute� for each attribute A
of c there is a binary relation named c�A with attributes c and A �a tuple in
c�A will consist of an oid associated with c and a value for A�
 The relations
corresponding to our running example will include� among others�

Person�Person�� Person�name�Person� name��

Employee�Employee�� Employee�familyMembers�Employee� familyMembers��

Company�Company�� Company�president�Company� president��

The constraints are functional� inclusion and exclusion dependencies ��	� used to
model the obvious properties of single�valued attributes� inheritance� referential
integrity� and disjointness of classes unrelated in the inheritance hierarchy� in
our running example� these will include� among others�

Person � name� Employee�Employee� � Person�Person�

Company�president�president� � Employee�Employee�

Vehicle�manufacturer�manufacturer� � Company�Company�

Company�Company� � Person�Person� � �

Each given OODB schema can uniquely be represented in relational terms in
this way
 Hence� instances over the OODB schema can simply be introduced as



instances over the relational representation satisfying the constraints
 Again� we
stress that this relational representation of an OODB is for conceptual purposes
only� it allows us to rely on well�known �i
e
� relational� concepts for explaining
our ideas� and certainly does not imply that we assume the OODB to be stored
on top of a relational system


We next associate a schema graph with a given OODB schema� which straight�
forwardly follows from the relational representation of the latter
 Since it will be
our goal to show how a user can specify connections between database objects
using PEs� this graph will turn out to be useful for making this explicit


If S is an OODB schema� the schema graph G�S� is a directed� weighted
graph de�ned as follows� For each relation R in the relational representation
of S there is a node in G�S�
 If R is unary� i
e
� corresponds to a class c� that
node has the form ��c� c��� if R is binary� i
e
� corresponds to a class c and one
of its attributes A� that node has the form ��c� A��
 The edges of G�S� either
connect �class identi�ers� with their �component attributes�� attributes with
the class identi�er of their type� or the class identi�ers of isa�related classes

More speci�cally� we distinguish the following types of edges in G�S�� where c
is a class and A is an attribute of c�

�a� an edge �c� c� � �c� A��

�b� an edge �c� A� � �c�� c�� if A is of type c��

�c� an edge �c�� c�� � �c� c� and an edge �c� c� � �c�� c�� if c isa c� holds in S


Finally� we assign weights to the edges of a schema graph
 The intuition be�
hind these weights is to have a notion of �conceptual distance� between objects
in the database
 The goal will then be to allow a user to specify the shortest
path or subpath between two given points by specifying these points only
 In�
tuitively� the weights distinguish the cases where a join would be necessary in
the relational representation from those where no join is needed� in the latter
case� we simply assign weight �
 However� in the former case� instead of just
assigning weight �� we assign weight i �a	 if the edge represents an inheritance
�aggregation	 relationship� resp
� as will be seen� this allows us to capture pre�
cisely the semantics we have in mind for abbreviated PEs
 In detail� weights are
assigned as follows�

Edges of type �a� �using the above list� indicate the access of a class attribute

since attribute values are directly associated with oid�s for each class� we assign
these edges weight � �i
e
� there is no conceptual distance�
 Edges of type �b�
indicate how to go from one class to the next via an aggregation link� we assign
these edges weight a
 Edges of type �c� state how to go from a subclass to a
superclass or vice versa
 Subclass oids are a subset of their superclass oids� so
we assign edges from sub� to superclass weight �
 Going from super� to subclass�
e
g
� to check whether a person object is in fact a student� is less trivial� these
edges have weight i
 Figure � shows an excerpt from the schema graph for our
running example


Now let S be schema and G�S� the schema graph of S
 A schema path is a
sequence of nodes pairwise connected by an edge
 If p � �v�� � � � � vn� is a schema



�Vehicle� manuf���Vehicle� color��Vehicle� model�

�Vehicle� Vehicle�

�Company� Company�

�Company� president� �Company� name� �Company� headq��

�Employee� Employee� �Employee� salary�

�Person� Person�

�Person� name� �Person� age� �Person� residence�

�Address� Address�

�Address� city�

������������ �

PPPPPPPPPPPq

��������������

����������� �

XXXXXXXXXz

�

�



	
�

�

�

PPPPPPPPq

XXXXXXXXXXXXXXz �
�
�
�
���

	

i

i

	
	

	

a

	 	
	

a

	

a

	

a	
		

�Automobile� Automobile�

Q
Q

Q
QQk Z

Z
ZZ�

	

Figure �� Part of the schema graph for our running example




path s
t
 ei � �vi� vi��� is an edge with weight w�ei�� � � i � n� the weight of p�
denoted w�p�� is a string consisting of those w�ei� which are �� �
 In our running
example� the following are schema paths�

p� � ��Company� Company�� �Company� headquarter�� �Address� Address��

p� � ��Company� Company�� �Company� president�� �Employee� Employee��
�Person� Person�� �Person� residence�� �Address� Address��

Thus� both p� and p� are paths from �Company Company� to �Address� Address�

Notice that w�p�� � a� while w�p�� � aa
 Clearly� a � aa if we compare these
strings lexicographically
 So given an expression of the form Company�address
�which will be a valid path expression in our approach�� it seems intuitively more
reasonable to interpret this as the query asking for the address of a company�s
headquarter than as the query asking for the address of a company�s president


We are now ready to de�ne the following partial order � on schema paths
which gives us the desired shortest path semantics� If p and p� are schema paths�
then p � p� if �i� w�p� � w�p�� in the lexicographical order given by i � a� and
�ii� if w�p� � w�p��� then p is a subpath of p�
 Here� a subpath means a path
that can be obtained by omission of nodes
 We can then call a schema path p

from v� to vn minimal if there is no other path p� from v� to vn s
t
 p� � p
 For
example� let p� and p� be as above
 Then p� � p�� since w�p�� � w�p��
 Next
let

p� � ��Company� Company�� �Company� president�� �Employee� Employee��
�Person� Person�� �Person� residence��

Then p� � p�� since their weights are equal� but p� is a subpath of p�

To conclude this section� we give an illustration of the comparison between

i and a weights
 Suppose that Person objects also have an attribute manager
which is of type Employee
 An expression of the form Person�salary could then
be interpreted either as the salary of a person as employee� or the salary of a
person�s manager
 The former is represented by schema path ��Person� Person��
�Employee� Employee�� �Employee� salary��� which has weight i� while the latter
is represented by schema path ��Person� Person�� �Person� manager�� �Em�
ployee� Employee�� �Employee� salary��� which has weight a
 Since i � a the
�rst interpretation is the minimal one
 This matches the intuition that the �rst
is the most natural interpretation of Person�salary� since it remains in the same
�is�a context� of Persons and Employees� in the sense of Neuhold and Schre�
���	


� A Generalization of Path Expressions

Formally� we de�ne a path expression �PE� as a string of the form

fs��gA�fs�g� � � � �Anfsng� n � �

where each Ai� � � i � n� is an attribute or a class name� and each sj � � � j � n�
is a selector of the form �t	� where t is a variable or a constant
 The curly braces
indicate that selectors are optional




Selectors were �rst proposed in XSQL as a means to bind variables to objects
participating in the path� or to restrict such objects to a constant
 For technical
simplicity� we will assume that no PE with a class name in its �rst position
begins with a selector
 This assumption is harmless since such esoteric cases will
not occur in practice
 For example� �p	�Person is not allowed� but Person �p	�
which is equivalent� is


Notice that PEs as de�ned here need not be fully speci�ed� a major di�erence
to traditional PEs is that we allow abbreviations
 Recalling from Section �� the
PE Employee �ownedVehicles �Automobile �drivetrain �engine �cc�z	 can be alterna�
tively stated as� e
g
� Employee �Automobile �cc�z	
 The basic idea for giving such
incomplete expressions a semantics is to expand them into �full� expressions�
using the weight of the corresponding schema paths as a selection criterion in
case there are several expansions� i
e
� to use the minimal expansion
 For ex�
ample� in our running example there exist several paths from class Employee to
class Automobile� in terms of the schema graph from Figure �� these are�

p� � �Employee� Employee�� �Person� Person�� �Person� ownedVehicles��
�Vehicle� Vehicle�� �Automobile� Automobile�

p� � �Employee� Employee�� �Employee� familyMembers�� �Person� Person��
�Person� ownedVehicles�� �Vehicle� Vehicle�� �Automobile� Automobile�

Notice that w�p�� � ai� while w�p�� � aai� thus� p� yields a �shorter� connec�
tion between employees and engines �a schema path with smaller weight�� so p�
would be used to expand the above PE
 Minimal expansions are formally de�ned
below


A PE A�� � � � �An� n � �� where selectors are ignored� is said to be full if A� is
a class name� and there exist nodes vi � �ci� Ai�� � � i � n� in the corresponding
schema graph s
t
 �v� � � � vn� is a path in that graph
 The following can be proved
by induction�

Lemma � For every full PE A� � � � An as above� the corresponding schema path
�v� � � � vn� is unique� Furthermore� v� � �c�� A�� satis�es A� � c��

As mentioned in Section �� our full PEs are already more powerful than
traditional ones� since they can contain class names �serving the same function
as from�clause bindings in languages like XSQL�� this generalization is necessary
for our abbreviation mechanism to be �exible


Now let p be a given PE
 An expansion of p w
r
t
 the underlying schema
is any full PE p� which contains p as a subexpression� and contains not more
selectors than p
 Here� a subexpression means an expression that can be obtained
by an omission of symbols
 Finally� a minimal expansion is an expansion whose
corresponding schema path is minimal


Notice that the expansion of a given PE thus starts with a class name and has
an associated schema path
 Expansions of PEs are in general not unique
 Con�
tinuing the previous example� the two expansions of PE Employee �Automobile�x	
are Employee�Person�ownedVehicles �Vehicle�Automobile �x	
and Employee�familyMembers �Person�ownedVehicles �Vehicle �Automobile �x	




The �rst one is minimal and indeed corresponds to the intended meaning

Clearly� full PEs contain a lot of redundant class names� but these will be elim�
inated by the reduction procedure introduced in the next section


We �nally note again that the process of expanding a given PE will not al�
ways have a unique solution
 For example� the expression name�Johnson� should
yield all objects for which name is de�ned and equal to Johnson
 Notice that
these objects could be either companies or persons� since both corresponding
classes have an attribute name
 In other words� there are two minimal expan�
sions Company�name and Person�name
 Under a �credulous� approach� the
evaluation procedure as de�ned in the next section will take their union
 We
point out that the liberal typing of PEs� introduced in ���	� can be explained as
a special case of this credulous approach


� Evaluating Generalized Path Expressions

In this section� we demonstrate that our extended mechanism for PEs can be
adopted by various query languages for OODBs
 To support this claim� we
exhibit a general� calculus�like language called OOC ��object�oriented calculus���
whose syntax employs PEs as introduced in the previous section� and whose
semantics will be stated in terms of the conventional relational calculus over the
relational representation of OODB schemas given in Section �


Building up from PEs and comparisons as atoms� we de�ne formulas and
queries of OOC syntactically in the standard manner�

�i� An atomic formula is either a PE or of the form t� t�� where t and t� are
terms �i
e
� variables or constants� and � is a comparison symbol�

�ii� if �� ��� and �� are formulas and x is a variable� then �� � ��� �� � ���
��� �� x� �� and �� x� � are formulas


Notice the simple and uniform format of our atomic formulas� path expres�
sions �and comparisons� are all that is needed due to the possible presence of
class names in PEs
 In particular� an equivalent to from�clauses as in XSQL is
not needed
 We de�ne free and bound variables in a formula in the standard way
���	
 An OOC query is now an expression of the form

fx� � � � xn j ��x�� � � � � xn�g�

where formula � has exactly x�� � � � � xn as free variables

As a simple example� fc j manufacturer �city �c	g is an OOC query
 As will

become clear� this query asks for all cities where a manufacturer �of vehicles� is
located
 As another example�

fn j ��e�Employee �e	�name�n	���a���x��e	�Automobile �a	��a	�cc�x		 x � ����g

asks for the names of those employees� all whose owned automobiles have an
engine with cc larger than ����




We now indicate a precise way to de�ne the semantics of an OOC query�
mostly by way of examples
 Since we assume that an OODB can conceptually
be represented as a relational database� and since the semantics of relational
calculus is well�known� it su�ces to translate each PE occurring in the query
into a relational calculus subformula that evaluates to the intended meaning
of the PE
 The relational calculus query resulting from the replacement of all
PEs by their translations can then be evaluated over the relational database we
associated to the OODB schema in Section �
 We emphasize again that this is
only a conceptual approach


In the previous section� we associated with each PE a number of full PEs�
namely� its minimal expansions
 Recall from Lemma � that full PEs have a
unique corresponding schema path
 This schema path is the key to evaluating
the full PE
 However� since full PEs are as explicit as possible� they contain a lot
of redundant class names which would cause redundant steps in the evaluation
procedure
 We eliminate this redundancy as follows
 Let p be a full PE
 The
reduction of p is obtained by eliminating each class name occurring in it� provided
the elimination does not incur a loss of variables� and provided the class name
does not occur either at the beginning or the end of the path


Recall the query fc j manufacturer �city �c	g� Path expression
manufacturer �city �c	 has several expansions
 For example�

Vehicle �manufacturer �Company �divisions �Division �employees �Employee �
Person �residence �Address �city �c	

is an expansion �with weight aaaa�
 However� the intended meaning of the query
is not the cities of the employees of manufacturers� but rather the cities of the
headquarter of the manufacturer itself
 This corresponds to

Vehicle �manufacturer �Company �headquarter �Address �city �c	

which is a minimal expansion �with weight aa�� in this example the only one

Reduction yields manufacturer �headquarter �city �c	
 The extent will now be a
relational calculus subformula having as free variables precisely the variables
occurring as selectors in p� in the example just considered� we thus obtain�

�� t��� � � � �� t��� �Vehicle�manufacturer�t�� � Vehicle � t�� � manufacturer� �
Company�headquarter�t�� � Company � t�� � headquarter � �
Address�city�t�� � Address � t�� � city� � t�� � t�� � t�� � t�� � t�� � c�

In general� the extent of a full path expression p whose reduction is of length
m is de�ned as the relational calculus subformula

����R� � 
 
 
 � Rm � equalities��

where each Ri is of the form cji �Aji�ti� � cji � ti� � Aji� or cji�ti��� ti� and ti�
are domain variables for the attributes� and the equalities are a conjunction of
atomic join or selection conditions �where the latter stem from the selectors in
p�� and where ��� denotes the full existential closure of all tij variables


Having de�ned extent�p� for full PEs� we now de�ne the translation of an ar�
bitrary PE p� as the disjunction

W
m�M extent�m�� whereM is the set of minimal

expansions of p�
 This formalizes the credulous approach mentioned earlier




For a di�erent example� assume that the database schema also has a class
Professor isa Employee� whose attribute teaches can take a set of Courses as
value
 The query fp j president �p	�teaches �math	g asks for presidents of compa�
nies who happen to be professors as well� and teach math
 The PE again has only
one minimal expansion� president �p	�Employee �Professor �teaches �math	� which
has as extent�

�� c��� o� �Company�president�c� p� � Professor�teaches�p� o� � o � math�

We now brie�y comment on the notion of safety in our OOC context
 There is
a syntactical notion of safety for relational calculus queries ���	 which guarantees
that they can be evaluated in �nite time
 We can adapt the de�nition of ���	 to
the OOC calculus� the only di�erence is that atomic formulas may now be PEs

We then obtain the following desirable property �the proof is omitted��

Theorem � If an OOC formula is safe in the adapted sense� then its relational
calculus translation is safe in the ordinary sense�

We now return to the query presented earlier� which brings up the issue of
optimization�

fn j ��e�Employee �e	�name�n	���a���x��e	�Automobile �a	��a	�cc�x		 x � ����g�

This query contains three PEs
 If we translate each of them separately into
relational calculus� we loose their interconnections� resulting in a poor over�
all translation
 For instance� consider the second PE �e	�Automobile �a	
 When
looked upon in isolation� e can be interpreted as a Person or an Employee
 For�
mally� the PE has two minimal expansions
 However� from the �rst PE� in which
e also participates� it is clear that only the Employee interpretation is relevant
to the query
 So� when writing out the overall translation in safe form� it will
contain a conjunct of the form�

Employee�e� � Person�e� � � � � �

which can be simpli�ed by removing the atom Person�e�� since we have the in�
clusion dependency Employee � Person 
 We are then left with two syntactically
equal disjuncts� one of which can be eliminated


There exist similar situations where exclusion dependencies can be used to
eliminate disjuncts
 For example� in the formula president �p	�age ���	��p	�name�n	�
retrieving all names n of presidents aged ��� the second PE� in isolation� can
interpret p as a Company or a Person� both classes have an attribute name

However� using the �rst PE� we know that p must be a person
 Therefore� the
absurd subformula of the form Company�president�c� p��Company�name�p� n��
� � �� which will appear in the result of the naive translation� can be elimi�
nated
 Indeed� this subformula is unsatis�able� because of the dependencies
Company�president�president 	 � Employee � Employee � Person�
Company�name�Company 	 � Company � and Person � Company � 





It turns out that the query simpli�cations just illustrated can be automated�
using techniques known from semantic query optimization
 ��	 describes a pow�
erful optimization algorithm which takes as input a non�recursive Datalog query
with strati�ed negation� and a set of integrity constraints written as Horn clauses

The algorithm simpli�es the query using the information from the constraints�
and it can be adopted in our context roughly as follows�

By Theorem �� the relational calculus translation of a safe OOC query is safe�
and hence can be translated into a non�recursive Datalog query with strati�ed
negation
 Furthermore� recall from Section � that our constraints are simple
cases of functional� inclusion� and exclusion dependencies
 These dependencies
can easily be rewritten as Horn clauses
 For our purposes� only the inclusion
and exclusion dependencies are relevant
 To give the query optimizer as much
information as possible� we do not only provide it with the explicitly given
dependencies� but also with their logical consequences
 Because the dependencies
are �unary�� it is relatively straightforward to generate their logical closure by a
transitive closure�like procedure
 The algorithm from ��	 will then simplify the
relational calculus translation of a safe OOC query as desired


� Discussion

We have argued for a more general perspective on PEs� going beyond a purely
navigational usage
 Extending their capabilities to specify connections between
objects� we showed how incompletely speci�ed expressions can be evaluated in a
transparent way
 This generalizes previous work in the context of the relational
model on UR interfaces
 On the other hand� our approach is general enough to
be incorporated into vastly any query language for OODBs� e
g
� SQL extensions
as described in ���	


Our view of PEs as a connection speci�cation mechanism is based on a gen�
eralization of PEs which allows them to contain class names in the middle� not
just in the beginning
 Indeed� this can be seen as an elegant way to avoid the use
of �from�clauses� by explicitly including class bindings into a path
 As a result�
the notion of PE has been extended in several ways� Links existing between the
classes of an OODB schema can freely be used in PEs in either direction� and
abbreviations may be applied wherever the user wants them


For reasons of clarity� we above restricted the use of inversions to cases where
a path goes from a superclass to one of its subclasses� i
e
� to inheritance links

However� our general approach to database connections also works for aggrega�
tion links and hence allows for bi�directional paths� i
e
� paths in which attribute
links may be traversed in forward or backward direction� in general
 We brie�y
describe an example next


Consider the expression Employee �location 
 If we just consider uni�directional
paths� this expression can only be interpreted as retrieving for each employee
the locations of the divisions of those companies that are manufacturers of some
vehicle owned by that employee
 However� a much more natural interpretation
of the above expression would be to retrieve for each employee the location of



the division where he is employed
 This connection traverses the employees link
backwards� as the corresponding full expansion shows�

Employee �employees���Division �location �

Inversions in PEs can also be used explicitly� allowing for the convenient
formulation of certain queries
 Suppose that we ask for the names of all com�
panies of which Perot is president
 Without inversions� this query requires an
evaluation of two PEs� First� Company�c��name�n� is used to obtain company
names
 Second� �c��president�name�Perot� is used to select those companies of
which Perot is president
 By allowing to use links in both directions� the same
could be obtained in one expression as follows�

�Perot��name���president���Company�name�n�

It can be shown that all technical results presented in the preceding sections
can be carried over to the generalized setting of PEs containing inversions as
well
 Of course� since more connections can now be followed� a PE will have
less chance of having only one minimal expansion
 So� the user will not always
be able to use abbreviations as dramatically as is possible in the uni�directional
case
 However� this will largely be compensated by the added ability to use
inversions


We mention that our PE mechanism could be extended further by explicitly
adding a �xpoint operator for dealing with recursion due to cycles in an OODB
schema
 Suppose a class Person has an attribute name of type String� and
an attribute child of type Person
 If we ask for all grandchildren of John� our
current proposal allows to express this using the PEs

Person�o��name�John� and �o��child�child�name�x�

Asking for all descendants of John could be handled by a �xpoint construct of
the form �o	�child ��name �x	� as in ��	


We conclude this paper with a comment on the complexity of our PE expan�
sion mechanism
 Finding minimal expansions of PEs can be accomplished using
well�known e�cient shortest�path algorithms
 However� in case multiple mini�
mal expansions exist� our credulous approach will take the union of all of them

This is a hidden source of complexity
 Indeed� it is not di�cult to construct a
database schema where two classes are connected by an exponential number of
paths of the same weight
 However� in practice� the number of minimal expan�
sions will usually be low� and their union can often be simpli�ed using the query
simpli�cation techniques described at the end of the previous section


Acknowledgement� The authors are grateful to Catriel Beeri and Michael
Schre� for helpful comments on an earlier version of this paper


References


�� C� Beeri� H�F� Korth� Compatible Attributes in a Universal Relation
 Proc� �st
ACM PODS ����� �����




�� E� Bertino� W� Kim� Indexing Techniques for Queries on Nested Objects
 IEEE
TKDE �� ����� �������


�� E� Bertino� M� Negri� G� Pelagatti� L� Sbattella� Object�Oriented Query Lan�
guages� The Notion and the Issues
 IEEE TKDE �� ����� �������


�� J� Biskup� H�H� Br�uggemann� Universal Relation Views� A Pragmatic Approach

Proc� �th VLDB ����� �������


�� V� Brosda� G� Vossen� Update and Retrieval in a Relational Database through a
Universal Schema Interface� ACM TODS ��� ����� �������


�� M�A� Casanova� V�M�P� Vidal� Towards a Sound View Integration Methodology

Proc� �nd ACM PODS ����� �����


�� U�S� Chakravarthy� J� Grant� J� Minker� Logic�Based Approach to Semantic Query
Optimization
 ACM TODS ��� ���	� �����	�


�� T�H� Chang� E� Sciore� A Universal Relation Data Model with Semantic Abstrac�
tions
 IEEE TKDE �� ����� �����


�� M� Consens� A� Mendelzon� GraphLog� A Visual Formalism for Real Life Recur�
sion
 Proc� �th ACM PODS ���	� �	�����


�	� A� Heuer� J� Fuchs� U� Wiebking� OSCAR� An Object�Oriented Database System
with a Nested Relational Kernel
 in� H� Kangassalo �ed��� Entity�Relationship
Approach� The Core of Conceptual Modeling� North�Holland ����� �	�����


��� R� Hull� M� Yoshikawa� ILOG� Declarative Creation and Manipulation of Object
Identi�ers
 Proc� ��th VLDB ���	� �������


��� M� Kifer� W� Kim� Y� Sagiv� Querying Object�Oriented Databases
 Proc� ACM
SIGMOD ����� �����	�


��� W� Kim� Introduction to Object�Oriented Databases
 The MIT Press� Cambridge�
MA� ���	


��� C� Lamb� G� Landis� J� Orenstein� D� Weinreb� The ObjectStore Database System

CACM �� ��	� ����� �	���


��� D� Maier� D� Rozenshtein� S� Salveter� J� Stein� D�S� Warren� PIQUE� A relational
query language without relations
 Information Systems ��� ����� �������


��� F� Manola� Object Data Language Facilities for Multimedia Data Types
 Techn�
Report TR�	�������������� GTE Labs�� Inc�� ����


��� E�J� Neuhold� M� Schre�� Dynamic Derivation of Personalized Views
 Proc� ��th
VLDB ����� �������


��� M�H� Scholl� C� Laasch� C� Rich� H�J� Schek� M� Tresch� The COCOON Object
Model
 Techn� Report ���� Departement Informatik� ETH Z�urich ����


��� J�D� Ullman� Principles of Database and Knowledge�Base Systems Vol� I
 Com�
puter Science Press� Rockville� MD� ����


�	� G� Vossen� Data Models� Database Languages� and Database Management Sys�

tems
 Addison�Wesley ����


