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Abstract This paper introduces a novel method for learning a wrapper for extraction of
information from web pages, based upon (k, l)-contextual tree languages. It also introduces
a method to learn good values of k and l based on a few positive and negative examples.
Finally, it describes how the algorithm can be integrated in a tool for information extraction.
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1 Introduction

The World Wide Web is an indispensable source of information. Extracting its content
for further processing, however, is difficult because it is formatted in HTML, which is
primarily focused on presentation. A wrapper is a general name for a procedure that ex-
tracts data (often from machine generated HTML-pages) based on the structure of the
documents, commonly without the use of linguistic knowledge. Various tools have been
designed to facilitate wrapper building, but the process remains tedious. Hence the ef-
forts (Califf and Mooney 1999; Carme et al. 2004; Chidlovskii et al. 2000; Freitag 1998;
Freitag and Kushmerick 2000; Freitag and McCallum 1999; Hsu and Dung 1998; Kosala
et al. 2002, 2003, 2006; Kushmerick et al. 1997; Muslea et al. 2001; Soderland 1999) to
create algorithms that learn wrappers from examples.
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Several approaches (Califf and Mooney 1999; Chidlovskii et al. 2000; Freitag 1998;
Freitag and Kushmerick 2000; Freitag and McCallum 1999; Hsu and Dung 1998; Kush-
merick et al. 1997; Muslea et al. 2001; Soderland 1999) process documents in a string
representation. HTML-code is encoded as a sequence of text and tags. But implicitly the
tags define a tree structure on the document. Flattening the tree structure of the document
to a string representation though can project sibling nodes arbitrarily far from one another.
Take for example a node with two children. During flattening, all the descendants of the
first child (the first child might be the root of a large subtree), will be put between the
first child and the second, hiding the sibling relation between the two. Learning a wrapper
that can express relations between such distant nodes turns out to be a quite difficult task.
To improve locality of the neighborhood nodes of the target nodes, (Kosala et al. 2006;
Kosala et al. 2002) represent documents as (ranked1) binary trees; they show that this in-
deed improves the quality of the results. In (Kosala et al. 2003), the same authors further
exploit the idea that a representation where the nodes in the neighborhood of the target node
are close to each other, makes the extraction task easier and introduce an unranked tree
representation. Combined with some ad-hoc design decisions that compensate for some rel-
evant context information that is not captured by their approach, they indeed obtain superior
results.

One limitation of these tree based methods is that they extract whole nodes (or subtrees)
in the document; most string-based approaches, on the contrary, can extract a substring of a
text node. This limitation is easy to overcome. Indeed, if a task needs sub-node extraction,
it is very natural to learn in a first step a wrapper that retrieves the relevant node(s), and
in a second step another wrapper that extracts the required information from the text in
the retrieved node(s). This text is much smaller than the text corresponding to the whole
document and hence this second task much better fits the capabilities of existing string based
approaches.

The current paper further explores the idea of using an unranked tree as a representation
of the document. Its contributions are as follows:

− The introduction of the notion of a (k, l)-contextual tree language for unranked trees and
an algorithm to infer such a language from positive examples (trees) only. A major virtue
is that this algorithm needs very few examples to learn. This algorithm is then applied on
marked trees to induce wrappers. We obtain better results than (Kosala et al. 2003) while
avoiding its ad-hoc design decisions.

− Whereas (Kosala et al. 2003) needed cross validation to learn the parameters (i.e., a fully
annotated data set), we introduce a method to learn the parameters with only a few neg-
ative examples (Sect. 6).

− We integrate our results into an interactive system that guides the user in building a wrap-
per by posing equivalence queries. For example, if a user wants to extract book prices
from www.amazon.com, he clicks on an example page (in the browser of the GUI-front
end) on one or more prices. The algorithm then learns a wrapper from these (positive
only) examples and highlights all elements that are extracted by this wrapper. When the
current hypothesis is erroneous, the user can either click on a highlighted item to indi-
cate it as a false positive or click on an item that is not yet highlighted to indicate that it
is a false negative. The application then adjusts the wrapper. This interaction continues
(possibly with other example pages), until the user is satisfied.

1In ranked trees, the number of children of a node is fixed and a function of its label. Nodes in unranked trees
can have an arbitrary number of children.

www.amazon.com
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A preliminary version of this paper appeared as (Raeymaekers et al. 2005).
We have organized the paper as follows. We describe the application of information ex-

traction from semi-structured data in more detail and present some running examples in
Sect. 2. In Sect. 3, we introduce and discuss the (k, l)-contextual tree languages, a subclass
of the regular unranked tree languages, as a solution for learning from positive examples
only. We detail the application of this new class of languages as a wrapper representation
in Sect. 4. Section 5 contains an overview of related work, and reports on an experimental
evaluation of four different wrappers. In Sect. 6 we provide an algorithm able to learn the
parameters for the wrapper induction from a few negative examples. We present an interac-
tive system based on the previous algorithms, and evaluate it in Sect. 7. We indicate possible
further work in Sect. 8 and we conclude in Sect. 9.

2 Information extraction from semi-structured data

The aim of Information Extraction (IE) systems is to extract specific information from hu-
man readable documents. In free text, the information is embedded in sentences and extrac-
tion techniques are rooted in the field of Natural Language Processing. In web pages (HTML
documents), all information is embedded in markup tags that indicate the document’s struc-
ture and layout. Such documents are said to be semi-structured. Full sentences are often
lacking, but, in a same page or a set of similar pages, the local structure around the elements
of interest is often very regular, in particular when the page is generated from a table by a
script. Hence it is feasible to use grammars to identify the elements of interest.

A typical information extraction task does not intend to extract information from all
possible HTML documents. Its aim is to extract a certain kind of information from a set
of documents where the information of interest is organized in a similar way. The set of
relevant documents is called the domain of the extraction task. For example, a wrapper can
be learned for extracting addresses of houses offered for rent by a particular agency. Once
learned it can be applied on all house offering pages of the agency. It makes no sense to apply
it on a page containing weather forecasts or on pages of another rental agency. Indeed, while
the latter holds similar data, the internal representation can be completely different.

Below, we introduce as running examples, two simplified information extraction settings.

Example 1 A database of articles can be queried for articles containing a given search term.
The query returns a list that contains for each selected article its title and author. This result is
converted to HTML by a script and visualized in a browser. Long lists are split over multiple
documents. A schematic example web page together with the corresponding HTML code is
shown in Fig. 1.

The domain for this setting consists of all possible pages that can be generated by the
script. One extraction task could be to extract the search term of the query for which that
page presents the results. Other tasks are to extract the list of titles or the list of authors.
A more complicated extraction task is to extract a list of tuples, each tuple containing a title
field and an author field.

Example 2 Research groups at some university maintain a list of their PhD students. For
each student, the page indicates the supervisor. An example web page together with the
corresponding HTML code is shown in Fig. 2.

One can define different kinds of extraction tasks. A basic distinction is between extrac-
tion of a single field and the extraction of a group of fields organized in a tuple or a more
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Fig. 1 Paper Database (Example 1): (a) HTML code; (b) screen shot

Fig. 2 Student List (Example 2), HTML code (a) and screen shot (b)
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complex data structure. Moreover, a single field can correspond to a single node in the doc-
ument tree, a part of a single node, or can be spread over a number of adjacent nodes. In the
latter case, the field can or cannot correspond to all leaf nodes of a single subtree. In this
paper, the focus is on extraction of a single field that corresponds to a single (text) node in
the document tree. In Sect. 8, we elaborate on how our method can be a building stone in
methods for more complex extraction tasks.

Wrapper learning is typically based on positive examples. A positive example consists of
a page—containing one or more occurrences of the target field—where one node is marked
as the target node. Other examples can come from different pages or from the same page.
It is not necessary to give all the target nodes in a given page as examples. As an example,
learning a wrapper for extracting the author field in Example 2 can be based on two examples
from that page, one example marking author1, the other marking author3 as the target page.
When used for extraction, the learned wrapper should extract all three author fields from the
page.

Some approaches expect completely annotated data. When a certain page is completely
annotated, i.e., all positive examples for that page are given, we have in fact also an implicit
collection of negative examples. Indeed, every node that is not marked in one of the posi-
tive examples is negative. It is tedious though to annotate pages completely. Giving a few
negative examples is not a viable alternative because it is difficult to select useful negative
examples as most negative examples do not affect the set of extracted fields. Therefore it is
common to start from positive examples only. After the learner has inferred a hypothesis it
can be used for extraction. False positives are sensible candidates for negative examples and
can be exploited to refine the hypothesis iteratively.

3 (k, l)-contextual tree languages

Unfortunately, the whole class of regular languages cannot be learned from positive exam-
ples only (Gold 1967). Intuitively the reason is that there is no boundary to end the general-
ization, and therefore the resulting language will accept everything. A common workaround
is to focus on a subclass of the regular languages that is learnable from positive examples
only. Examples of such subclasses of string languages are k-reversible languages (Angluin
1982), k-contextual languages (Muggleton 1990) and k-testable languages (García and Vidal
1990). The latter two are often referred to as k-local languages as they are equivalent (Aho-
nen 1996). Similar developments occurred for tree languages. Algorithms for induction of
string automata have been upgraded for tree automata. Several works exist for ranked trees,
e.g., (García 1993; Knuutila 1993) (k-testable tree languages) and (Rico-Juan et al. 2000)
(probabilistic extensions). HTML or XML documents are clearly not ranked; hence some
encoding as ranked trees is needed in order to apply k-testable tree language learning to
Web information extraction; the authors of (Kosala et al. 2006, 2002) use a binary encoding
for this purpose. This binary encoding still distorts the structural relationships between the
target and its neighborhood, as the distance between a node and its sibling can get arbitrary
long.

Therefore, in this section, we introduce (k, l)-contextual tree languages, which are un-
ranked, and therefore directly applicable. We start, in Sect. 3.1, with recalling some termi-
nology about trees and introducing the concept of a (k, l)-fork. Section 3.2 introduces the
notion of (k, l)-contextual tree languages and shows that a tree belongs to a particular (k, l)-
contextual tree language when its (k, l)-forks belong to the so called representative set of
the language. Finally, Sect. 3.3 shows that a (k, l)-contextual tree language is obtained by
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taking the (k, l)-forks in a set of positive examples as its representative set. It is also proven
that the properties of (k, l)-contextual tree languages are similar to those of k-contextual
string languages, namely, they are anti-monotone in the values of the parameters k and l and
learnable in the limit from positive examples only.

3.1 Preliminary definitions

We define the alphabet Σ as a finite set of symbols. The set T (Σ) of all finite trees with
nodes labeled by elements of Σ can be recursively defined as T (Σ) = {f (s) | f ∈ Σ,s ∈
T (Σ)∗}. We usually denote f (ε), where ε is the empty sequence, by f . The subtrees of
a tree are inductively defined as sub(f (t1, . . . , tn)) = {f (t1, . . . , tn)} ∪ ⋃

i sub(ti). A tree
language is any subset of T (Σ). The set of (k,l)-roots of a tree f (t1, . . . , tn) is the singleton
{f } if l = 1; otherwise, it is the set of trees obtained by extending the root f with (k, l − 1)-
roots of k successive children of t (all children if k > n). Formally, we have the following
inductive definition. For sets S1, . . . , Sn of trees, we use the notation f (S1, . . . , Sn) for the
set of trees {f (s1, . . . , sn) | si ∈ Si}:

R(k,l)(f (t1 . . . tn)) =
⎧
⎨

⎩

{f } if l = 1,

f (R(k,l−1)(t1) . . .R(k,l−1)(tn)) if l > 1 and k > n,
⋃n−k+1

p=1 f (R(k,l−1)(tp) . . .R(k,l−1)(tp+k−1)) otherwise.

As an extension, the (k, l)-roots of a set T of trees are defined as R(k,l)(T ) = ⋃
t∈T R(k,l)(t).

Finally, a (k, l)-fork of a tree t is a (k, l)-root of any subtree of t . Thus, the set of (k, l)-forks
of t can be written as R(k,l)(sub(t)) and we denote it by F(k,l)(t). The (k, l)-forks of a set of
trees T are then defined as F(k,l)(T ) = ⋃

t∈T F(k,l)(t).
Given these definitions we can state that R(k,l)(T ) and F(k,l)(T ) are monotone in T , or

formally:

Proposition 1 T ⊇ T ′ implies R(k,l)(T ) ⊇ R(k,l)(T
′) and F(k,l)(T ) ⊇ F(k,l)(T

′).

Example 3 Below we show graphically the (2,3)-forks of a tree t . The first 6 of these forks,
are the (2,3)-roots of t .

3.2 (k, l)-contextual tree languages

Definition 1 The (k, l)-contextual tree language based on the set G of trees is defined as
L(k,l)(G) = {t ∈ T (Σ) | F(k,l)(t) ⊆ G}.

Every given (k, l)-contextual language can be defined by an infinite number of different
sets. For example adding elements to or removing elements from G with either height > l

or width > k will not influence the definition of L(k,l)(G):
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Proposition 2 L(k,l)(G) = L(k,l)(G ∩ T(k,l)) with T(k,l) the set of trees with height at most l

and width at most k.

Note that T(k,l) is finite, so we can always assume that G is finite. But even addition or
removal of trees with height ≤ l and width ≤ k will not always influence the definition of
L(k,l)(G). The following proposition shows that there is always a unique smallest G:

Proposition 3 If L is (k, l)-contextual, then NL := F(k,l)(L) is the smallest set G (with
respect to set inclusion) such that L = L(k,l)(G). We call NL the representative set for L.

Proof First, we show that L = L(k,l)(NL). The inclusion from left to right is trivial. For the
converse inclusion, we know that L = L(k,l)(G) for some G (since L is given to be (k, l)-
contextual). Clearly, NL ⊆ G for any such G. Hence, if F(k,l)(t) ⊆ NL for some tree t , then
also F(k,l)(t) ⊆ G and thus t ∈ L.

Since we observed that NL ⊆ G for any G such that L = L(k,l)(G), the minimality of NL

is established as well and the proposition is proved. �

As an immediate corollary we obtain:

Corollary 1 For any two (k, l)-contextual languages L1 and L2, we have L1 ⊆ L2 if and
only if NL1 ⊆ NL2 .

Proof The implication from left to right is trivial. For the other direction, we have L1 =
L(k,l)(NL1) ⊆ L(k,l)(NL2) = L2. �

Example 4 To illustrate these definitions we show an example with (k, l) = (2,2). Given a
set of trees

G = ,

the associated language is

L(2,2)(G) = .

And the representative set for this language is

N = .

The tree

t =
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Algorithm 1 learnWrapper
Input: The set of positive examples E, and the parameters k and l.
Output: The learned (k, l)-contextual language.

1: Forks = ∅
2: for each Example ∈ E do
3: Forks = Forks ∪ F(k,l)(Example)
4: end for
5: return L(k,l)(Forks)

does not belong to L(2,2)(G) because

F(2,2)(t) = �⊆ G.

Note that N �⊆ L(2,2)(G).

Our definition generalizes to unranked trees the notion of k-testable string language “in
the strict sense”. To generalize the more expressive notion of k-testable, studied by Mc-
Naughton (1974), one should consider a set of sets of forks for G (one for each example).
Then a tree is accepted if its forks are a subset of those from one example. Our experiments
(Sect. 5.3) indicate that k-testable languages in the strict sense are sufficiently expressive,
hence we explore only this notion.

The local unranked tree automata of (Kosala et al. 2003) correspond to the special case
l = 2 in our approach. The lack of expressiveness in vertical direction was remedied with
some extra preprocessing (see Sect. 5.2).

3.3 Learning (k, l)-contextual tree languages from positive examples

To learn a (k, l)-contextual tree language from a set of positive examples E, we collect the
(k, l)-forks of these examples and use them as a representative set for the language to be
learned. In other words, we assume the language to be learned equals L(k,l)(F(k,l)(E)) (see
Algorithm 1). Note that the representative set for this language equals F(k,l)(E). This way,
overgeneralization is avoided as, for a given k and l, the algorithm finds the most specific
(k, l)-contextual language that accepts all the examples. Intuitively we can state that the
generalization is constrained by restricting the minimal granularity of the building blocks
that can be used. These building blocks are the forks found in the examples.

We note that this learning method is anti-monotonic in the parameters k and l:

Proposition 4 If k′ ≥ k and l′ ≥ l then L(k′,l′)(F(k′,l′)(E)) ⊆ L(k,l)(F(k,l)(E)).

Proof Let t be a tree such that F(k′,l′)(t) ⊆ F(k′,l′)(E). We must show that F(k,l)(t) ⊆
F(k,l)(E). Consider a (k, l)-fork r of t . Then r can be extended to a (k′, l′)-fork r ′ of t

(it is possible that r ′ equals r). By the given, r ′ also appears as a (k′, l′)-fork of some tree
t ′ in E. But then r appears as a (k, l)-fork of t ′ as well, and thus r ∈ F(k,l)(E) as had to be
shown. �

This anti-monotonicity is typical for local languages such as k-contextual languages
(Muggleton 1990; Ahonen 1996), k-testable languages (García and Vidal 1990), and
k-testable tree languages (García 1993; Knuutila 1993).
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In the remainder of this section we formally prove that the class of (k, l)-contextual tree
languages is learnable in the limit (Gold 1967) from positive examples only. This proof is
structured in the same way as similar proofs in (Angluin 1982; Muggleton 1990). Hence we
start by proving that there exists a characteristic sample for every language.

Definition 2 A characteristic sample of a (k, l)-contextual tree language L is a finite sub-
set S of L, such that L is the smallest (k, l)-contextual tree language, given k and l, that
contains S.

Proposition 5 Every (k, l)-contextual tree language has a characteristic sample.

Proof Call two trees t1 and t2 “equivalent” if F(k,l)(t1) = F(k,l)(t2). Since there are only fi-
nitely many different trees of width k and height l, there are also only finitely many different
sets of such trees, and as a consequence, there are only finitely many different equivalence
classes. Moreover, any (k, l)-contextual language L is closed under equivalence, i.e., can
be written as a (finite) union of equivalence classes. We now claim that it suffices to pick a
representative from each class in L to obtain a characteristic sample S for L.

To prove this claim, consider any other (k, l)-contextual language L′ such that L′ ⊇ S.
We show L ⊆ L′. Thereto, let t ∈ L. Then t is equivalent to some representative t ′ from S.
Since S is contained in L′ and L′ must be closed under equivalence, also t ∈ L′ as desired. �

A positive presentation of a language L is an infinite sequence of trees T = t1, t2, t3, . . .,
such that every element of the sequence is an element of L and vice versa. We define an
inference operator KL, which given an infinite sequence of trees t1, t2, t3, . . . and para-
meters k and l, produces an infinite sequence of tree languages L1,L2,L3, . . . in which
Ln = L(k,l)(F(k,l)({t1, t2, . . . , tn})) for all n ≥ 1.

Observe, by Proposition 3, that Ln ⊆ L for each n, if L is (k, l)-contextual. The following
proposition now shows that (k, l)-contextual languages are indeed identifiable in the limit:

Proposition 6 If L is (k, l)-contextual, then Ln = L for n sufficiently large.

Proof Let n be sufficiently large such that {t1, . . . , tn} includes a characteristic sample S

of L. Then Ln is a (k, l)-contextual language containing S and thus Ln ⊇ L. Since also
Ln ⊆ L, we conclude Ln = L. �

Example 5 The language L2,2(G) in Example 4 is divided in 3 equivalence classes. Taking
a representative of each class results in the following characteristic sample:

.

We can reduce this to

,
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as all the forks of the first two representatives are also forks of the last one.

Hence the class of (k, l)-contextual tree languages is learnable from positive examples
only. Choosing larger parameters allows for more expressive languages, at the cost of bigger
representative sets and bigger characteristic samples for these languages. For learning we
want to choose the parameters small, to minimize the number of examples needed, but big
enough such that the resulting language is expressive enough for the problem at hand.

4 Information extraction with (k, l)-contextual tree languages

In Sect. 4.1, we describe how the marking of nodes of interest provides a foundation for the
use of a (k, l)-contextual tree language as a wrapper that can extract the nodes of interest.
Section 4.2 introduces two generalizations to the basic (k, l)-contextual tree construction.
The first one introduces wildcards to generalize over irrelevant text nodes and the second
one ignores forks that are not in the neighborhood of the node of interest.

4.1 Representing wrappers with tree languages

In this section we show how tree languages can be used to extract information from
(semi)structured documents like HTML. Basically we need to be able to select specific
nodes (be it leaves or internal nodes) from a given tree. This selection is represented by
marking the tree. A marked tree is an element of T (ΣX) with Σ a given alphabet and X

a marker. The marked alphabet ΣX is defined as ΣX = Σ ∪ {sX | s ∈ Σ}. Hence the nodes
of a marked tree have either a marked or an unmarked label. Marking a node s consists of
replacing it by a marked equivalent sX .

A marking of a tree is correct (with regard to the extraction task) when each node that
should be selected, and only those, are marked. Each tree has a unique correct marking. A
marking is partially correct when every node that is marked is indeed a node that should be
selected. A given tree can have multiple partially correct markings. Tree languages defined
over ΣX will accept marked trees. Given some extraction task, one can construct a tree
language that accepts all correctly marked trees as well as a language that accept all partially
correct marked trees.

Given a tree and a tree language that accepts correct markings for a given task, every pos-
sible marking of the tree can be checked and the single one that is contained in the language,
indicates the requested nodes. The exponentially high number of possible markings makes
this approach infeasible though. Using a tree language that accepts only partially correct
markings allows for a more practical extraction method. One can mark each time a single
node in the tree. If this marked tree is accepted, the marked node is one of the target nodes.
Hence only n markings have to be checked, with n the number of nodes. This approach is
also used in (Kosala et al. 2002, 2003, 2006). In (Raeymaekers and Bruynooghe 2004a) an
even more efficient extraction method is proposed that extracts the nodes in a single run. We
will not discuss the latter method here as it falls out of the scope of this paper. Given that a
practical method for extraction exists, we can conclude that representing wrappers by tree
languages is a valid approach.

4.2 Wrapper induction

To learn a wrapper, we need to learn a language that accepts the partially correct marked
trees for the given task. The training examples given to the learning algorithm consist of
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Fig. 3 Positive example for author extraction (left) in the Article Database (see Fig. 1) and for student
extraction (right) in the Student List (see Fig. 2). In both examples, one node is marked (with respectively
“A” and “N”). For the Article Database, all text nodes have been replaced by the wildcard “@”; for the Student
List, {′name :′} is used as distinguished context and is not replaced by the wildcard symbol

trees with a single node marked. Each marked node corresponds to an example of a target
node of the task. We make two extra changes to the basic algorithm. The first change is to
generalize over text nodes, the second one is to generalize over the set of forks.

As the text nodes come from an infinite alphabet we cannot learn them from a small
number of examples. To solve this, we follow (Kosala et al. 2006; Kosala et al. 2003; Kosala
et al. 2002): All text nodes in the examples are replaced by a wildcard (@). During extraction
the wildcard matches with every text node, even those not seen during the learning phase.
Sometimes this leads to overgeneralization, when a text node close to the target is needed
to disambiguate between a positive and a negative example. We call such a text node a
distinguishing context. A set of distinguishing contexts can be given, to keep text nodes
with these context from being replaced. Figure 3 shows a positive example, for the author
extraction task of Example 1 (using a marker ’A’) as well as a positive example for the name
extraction task of Example 2 (using a marker ’N’). One node is marked in both examples; a
distinguishing context is used for the name extraction task.

The heuristic we use to determine the set of distinguishing contexts is different (and sim-
pler) than the one used in (Kosala et al. 2002, 2003, 2006). We inspect all positive examples
in a preprocessing step. For each positive example we collect the set of text nodes that occur
in the (k, l)-forks for that example that contain the marked node. The set of distinguishing
contexts is then the intersection of these sets. This way text nodes are only generalized when
there is a positive example for which they do not occur in its parameterized neighborhood.
This procedure guarantees that (given sufficient examples) all the strings remaining in the
resulting set are true context for the target node. It is possible though that some discrimina-
tive context string is not found (for example, when the target is a node with as context either
c1 or c2). So far we have not encountered the need for a more elaborate procedure. A final
remark is that the use of distinguishing contexts can be turned off. The boolean which con-
trols this feature can be considered as a third parameter of our algorithm; the others being k

and l.
When learning marked (k, l)-contextual tree languages, the set of forks in the represen-

tative set splits naturally in two; a set of forks with a single node marked, and a set of forks
without any marked node. One can argue that the forks containing the marker provide the lo-
cal context needed to decide whether a node should be extracted or not, while the other forks
describe the general structure of the document. The latter merely serve to decide whether
the document is in the domain of the extraction task. Learning the domain typically requires
substantially more examples than learning the local context. However, in our setting, we as-
sume all documents are from the correct domain; hence there is no need to learn the domain
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and we can ignore all forks that do not contain the marker during learning and extraction.
This way a small set of examples will be able to cover the variance of forks in areas far away
from the targets.

Example 6 Given the positive example for the author extraction task shown in Fig. 3, and
given the parameters k = 1 and l = 3, we learn the wrapper by collecting the marked forks.
The representative set for the wrapper becomes

.

Marking the node containing ’author2’, and collecting its (1,3)-forks results in the set

.

Given that a wildcard matches every text node, each of these forks matches with one of the
forks in the representative set, hence “author2” is extracted. For the text node containing ’1’,
the collected set of (1,3)-forks is

.

The last fork does not match with the forks in the representative set and the marked text
node is rejected.

For the student extraction task, the tree as shown in Fig. 3 gives as representative set of
the wrapper learned for k = 2 and l = 3 the following set of forks:

.

This wrapper will extract all students, and reject all other nodes.

5 Related work and experimental comparison

In this section we survey related work, starting with string based methods in Sect. 5.1 and
continuing with tree based method in Sect. 5.2 and select the best existing methods for
inclusion in an experimental study which is described in Sect. 5.3.
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5.1 String based methods

Some string based methods (Chidlovskii et al. 2000) are node based, i.e., they extract whole
text nodes, but the majority can extract a substring from a text node. Instead of finding
a single node, they return the boundaries of the substring. Except for WIEN (Kushmer-
ick et al. 1997) which is character based, all systems are token-based. This means that the
start and end boundaries are always between two tokens. The target values will usually
not contain half a token, and the higher granularity speeds up the learning phase. The use
of wildcards for different classes of tokens also drastically reduces the amount of exam-
ples needed for learning. Some systems were designed for information extraction from free
text (BWI, Freitag and Kushmerick 2000, HMM, Freitag and McCallum 1999, SRV, Freitag
1998, RAPIER, Califf and Mooney 1999) but are general enough to apply to semi-structured
data as well. WHISK, Soderland 1999 is designed for both free text and semi-structured data.
We have chosen two of the more performant systems (BWI and STALKER, Muslea et al.
2001) to compare experimentally with our approach. Experiments in (Freitag and Kushmer-
ick 2000) show that BWI outperforms HMM, SRV and RAPIER (the last one only tested on
free text). It is argued in (Muslea et al. 2001) that the rules used in WIEN, SoftMealy (Hsu
and Dung 1998), SRV (Freitag 1998) and RAPIER (Califf and Mooney 1999) are strictly less
expressive than STALKER’s. In the same paper it is shown experimentally that STALKER
outperforms WIEN. Below we describe the STALKER and BWI system a bit more in depth.

To extract a subsequence from a sequence of tokens, the STALKER system uses a start
and an end rule, to find the boundaries of that subsequence. The start rules are executed in
forward direction from the beginning of the sequence, the end rules are executed in back-
ward direction. A STALKER rule is either a simple rule or a disjunction of simple rules. In
the latter case the boundary is given by the first simple rule that does not fail. The simple
rules are based on a list of so-called landmarks. A landmark is a sequence pattern consisting
of tokens and/or wildcards. When a rule is executed, it searches for a part of the sequence
that matches the first landmark. From the end of this part the search for the second land-
mark is started, and so on. The boundary that is finally returned is either the end or the
beginning of the part that matched the last landmark. Which one is indicated by a modifier.
This is respectively SkipTo and SkipUntil for using the end or the beginning (or BackTo
and BackUntil for rules in the other direction). When the search for a landmark reaches the
end/beginning of the sequence, the rule is said to fail. STALKER uses multiple types of
wildcards that form a type hierarchy. This hierarchy is shown in Fig. 4.

Example 7 The rule SkipTo(<p><b><a>) applied on the HTML sequence of Example 1
returns the position at the end of the first occurrence of these three consecutive tags, i.e., at
the beginning of ‘title1’, While the rule BackTo(<center>) BackTo(</a>) applied on the
same sequence returns the position at the end of ’author3’. These rules will both fail on the
HTML sequence of Example 2. The rule SkipTo(name Punctuation) SkipUntil(Capitalized)
with two landmarks, each containing a wildcard, will, given the sequence of Example 2,
return the beginning of ’Stefan’.

The STALKER induction algorithm starts from a set of positive examples (each consist-
ing of a sequence wherein boundaries of a subsequence are given). As long as this set is
not empty, a new simple rule is learned, those examples that are covered by this rule are
removed from the set, and that rule is added to the disjunction of rules that will be the final
result. The algorithm to learn a simple rule chooses one seed example (the shortest example
in the set) to guide the induction, the other examples are used to test the quality of candidate
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Fig. 4 Wildcard hierarchy.
A token that matches a wildcard
of a given type, will also match
the wildcards of the ancestors of
that type

rules. The algorithm does not search the entire rule space for the best rule but takes in each
loop two rules from the current set of rules. One is the best solution in the set, the other is the
best refiner in the set. Some heuristic rules are designed to define a ranking (best solution
and best refiner) over a set of rules. This ranking is based on properties of the rules and on
the number and quality of the extractions that each rule performs on the other examples. The
refinements of the best refiner, together with the best solution, gives the new rule set for the
next iteration. This loop continues until a perfect solution is found (one that either extracts
correctly from an example or fails on that example) or until all refinements fail. The initial
set of candidate rules are single landmark rules, with each landmark a single token or wild-
card (occurring in the seed). The refinement step will either extend one of the landmarks of
a rule with an extra token or wildcard (the extended landmark has to match within the seed),
or add a new single token/wildcard landmark somewhere in the rule (the token or wildcard
has to occur in the seed).

In contrast with other string based methods, STALKER implements a hierarchical extrac-
tion approach. An Embedded Catalog (EC) describes the structure of the data. This is a tree
structure where the leaves are fields, and the internal nodes either tuples or lists. Figure 5
shows the EC for Example 1 and 2. Note that the EC formalism might not be expressive
enough to represent some more complex data structures. To extract a specific field, first the
parent has to be extracted, and the extraction rules are then applied on the subsequence ex-
tracted for the parent. To extract the author fields of Example 1, first the complete list of
papers is extracted (the rules from Example 7 achieve this). Then the individual papers are
extracted. And finally from each paper, the author field is extracted. The advantage of this
approach is that complex extraction tasks are split into easier problems. Disadvantages are
that during learning more examples are needed to learn for every level of the hierarchy,2 and
that errors in the different levels will accumulate.

Like STALKER, the Boosted Wrapper Induction (BWI) extracts a subsequence using a
start rule and an end rule. A BWI rule is a set of simple rules with an associated weight.
During extraction, each simple rule in the set extracts a boundary and casts a weighted
vote, to return a single winning boundary. Using the terminology from STALKER, a single
BWI rule consists of two landmarks, called prefix and suffix. The rule searches for the first

Fig. 5 Embedded Catalogs for the paper database ex. (left) and the student list ex. (right)

2To learn list extraction, each example should consist of two consecutive elements of the list.
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sequence that matches the concatenation of prefix and suffix. The boundary point is placed
in between the tokens that match the prefix and those that match the suffix. This is less
expressive than a simple STALKER rule. In BWI, both start rules and end rules go in the
forward direction. The BWI system does not extract hierarchically. The rules are applied to
find every matching point in the entire HTML sequence.

Example 8 The BWI rule 〈 [<p><b><a>], [non-Html] 〉 looks for the first sequence of the
three html tags that are followed by an non-html token. Applied on the HTML sequence of
Example 1, it returns the start position of ’title1’.

The BWI learning algorithm uses a boosting approach. It learns repeatedly from a set of
weighted examples. In each iteration, a simple rule is learned with a weak learner. After
each iteration, the weights of the examples are changed according to the performance of the
learned rules. Examples that are extracted well get a smaller weight while for the others the
weight is increased. Hence, in each iteration, the weak learner focuses on the examples for
which the results are poor. This technique is shown to give significant improvements over
the use of the weak learner on its own (Schapire and Singer 1999). The number of boosting
iterations is given as a parameter T .

The weak learner used in BWI, starts from an empty pair 〈 [], [] 〉. The algorithm searches
for the best possible extension (front) of the prefix and the best possible extension (back) for
the suffix. A lookahead parameter L indicates the maximal length of the extensions. Every
combination of the old and new prefix with the old and new suffix is given a score with
a function that measures performance on the training set. The combination with the best
score becomes the new rule. This process is repeated until the rule remains unchanged. The
algorithm can work with extra negative examples next to the positive ones.

It is not straightforward to compare the expressiveness of the (k, l)-contextual tree lan-
guages with the wrapper representation languages of STALKER or BWI. Therefore, an ex-
perimental comparison is performed in Sect. 5.3. Note though that even when a correct
wrapper can be expressed in the representation language, the heuristic search in STALKER
does not guarantee to find it. For our induction algorithm holds that if a correct wrapper can
be expressed as a (k, l)-contextual tree language, it will be found (given sufficient exam-
ples).

5.2 Tree based methods

In (Kosala et al. 2003), it is shown that wrappers learned directly from the unranked tree
structure of the document perform better than wrappers that learn from ranked representa-
tions of the unranked document tree. The tRPNI algorithm (Carme et al. 2004) learns from
unranked trees. Its hypothesis space consists of whole class of regular unranked tree lan-
guages. However, it needs completely annotated documents. As our focus is on learning
from a few positive examples, we do not consider it further. The other tree based learning
approach we are aware of is the Local Unranked Tree Inference(LUTI) algorithm (Kosala
et al. 2003) which we describe in more detail below. Besides approaches that learn a wrap-
per, there is also a research line that explores wrapper programming languages and the visual
specification of wrappers. See (Gottlob and Koch 2004) for a representative example.

The Local Unranked Tree Inference algorithm is closely related to our approach. As men-
tioned in Sect. 4.2, both methods start with a preprocessing step to generalize over the text
nodes in the training examples. Each text node becomes either a target (X), a distinguished
context (C) or a generalized text node (@). Note that this approach uses only a single string



170 Mach Learn (2008) 71: 155–183

as distinguishing context instead of a set. Basically this method infers a (k,2)-contextual
language (a special case l = 2 of our method). But some extra differences exist. We can
describe these as two transformations that are performed in a preprocessing step on both
training examples as on the documents to be extracted.

The first transformation replaces every node f into a node f.X, if its subtree contains
the X-node. If the subtree does not contain the X-node but a C-node then it is replaced by
f.C. Hence, limited information is passed infinitely upwards, making the method not purely
local. However, the subclass remains inferable and the expressiveness is enhanced.

The second transformation in (Kosala et al. 2003), although part of the inference al-
gorithm, can also be explained as a preprocessing step. The automaton accepts everything
below a node that is not of the form f.X, i.e., all subtrees below such nodes can be re-
moved and only the path from the root to the X-node is left, together with the siblings of the
nodes on that path; parts farther away from the marked node are ignored. This enhances the
generalizing power of the resulting language (and reduces the expressiveness).

Example 9 The left tree below shows the document tree of Example 2 after the first trans-
formation, while the tree on the right shows the result of applying the second transformation
to that same tree. Note that the string “name:” is used as the distinguishing context and is
replaced by C.

Thanks to the first transformation, the LUTI algorithm can express some global vertical
relations. The relation between the target node or a context node and an ancestor that is an
arbitrary number of levels higher can be described, despite that l is always 2. Our algorithm
(KL) is purely local and does not have this extra expressiveness. Our experiments showed
that local information in the vertical direction (a high enough l parameter) was sufficient for
all data sets.

The second transformation in LUTI reduces its expressiveness with regard to KL as all
information about the siblings of the target node is removed while KL retains this neighbor-
hood. We encountered several data sets where that information was needed to disambiguate
positive and negative examples. Consider, for instance, a table with bargains. The aim is to
extract those with a picture of the item. The picture, when present, occupies the first cell of
the row (a sibling of the cell containing the target).

5.3 Experiments

We evaluate our approach on the WIEN data sets, the bigbook data set and the okra data
set.3 Each of these sets contains a set of pages from a same domain, most of them have an

3These are available at the RISE repository: http://www.isi.edu/info-agents/RISE/index.html.

http://www.isi.edu/info-agents/RISE/index.html
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associated set of annotations for a specific extraction task. We have split the tasks aiming
at the extraction of a n-tuple in n single field extraction tasks. We refer to them with the
name of the original data set and the index of the field in the tuple. We use a well-defined
subset of 36 extraction tasks from the available WIEN data tasks, namely those that extract a
complete text node and for which the information on the nodes to be extracted is available in
the WIEN data. Each example is a single page with exactly one of the target values marked.
The target concepts are given only through annotated pages. No rules are given for a correct
wrapper. Hence we will assume that the annotated pages contain all possible exceptions,
and that a wrapper is correct for the given domain when it correctly extracts every annotated
page in the data set.

We use the F1 score as a fitness criterion. Given E, the number of text nodes extracted
from the test set, C, the number of correctly extracted text nodes, and T , the total number of
text nodes to be extracted from the test set, Precision(P ) is defined as P = C/E, recall(R)
as R = C/T . The F1 score is defined as the harmonic mean of precision and recall: F1 =
2PR/(P + R).

For the purpose of doing these experiments we have obtained an implementation of the
BWI algorithm from the Fondazione Bruno Kessler. For the STALKER and Local Unranked
Tree Inference algorithms we used our own implementation. Through extensive communi-
cation with the authors we have tried to stay as close as possible to the original implemen-
tations. We used for both STALKER and BWI the same set of wildcards, the one shown in
Fig. 4.

The experiments compare the ability of the different algorithms to learn from a small
set of positive examples. In our setup, each experiment selects 5 random examples from a
data set. Each algorithm learns from the same 5 examples, and the F1 score of the resulting
wrapper on the whole data set is calculated. This experiment is not intended to measure the
number of examples needed by each algorithm but to measure which one learns best from a
given sample of (incomplete) data. Table 1 shows for each task the mean over 5 experiments.
Note that due to the hierarchical nature of STALKER, it is given more information per
example. Not only the boundaries of the target, but also the boundaries of its ancestors,
and when one of the ancestors is a list element also the boundaries of one of its adjacent
siblings. It also expects the embedded catalog for the induction task at hand. For the WIEN
data sets, we use the embedded catalogs originally used in the STALKER papers. We did
not run STALKER on bigbook and okra due to a lack of embedded catalogs for them. We
did not run BWI on them as it was not worth the effort of making an extra converter.

The STALKER algorithm is parameterless. The (k, l)-contextual algorithm presented
here needs three parameters: k, l, and whether to use distinguishing contexts or not. These
parameters need tuning for every task. In column KL(opt.) in Table 1, the results are shown
for the set of optimal parameters for each experiment (based on F1 score on the test set). To
have a fair comparison though, the parameters have to be chosen without the extra annota-
tions in the test set. We therefore use a parameterless version of our algorithm (Raeymaekers
and Bruynooghe 2004b). This version uses a heuristic to make an estimation for the para-
meters, based on unmarked pages. As unmarked pages we use the pages from the given
examples with the markers removed. The results are given in column KL(est.). The esti-
mated parameters are sometimes suboptimal though. This is part of the motivation to learn
these parameters interactively (see Sect. 7).

The BWI system has two parameters for the learning phase: lookahead (L) and the num-
ber of boosting iterations (T ), and one parameter (τ ) for the extraction phase that allows
to make a tradeoff between precision(τ = 1) and recall(τ = 0). We used for T the values
10 and 100, but found them to make no difference. The explanation in (Freitag and Kush-
merick 2000) seems valid: in contrast to free text, semi structured documents are formatted
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Table 1 Experimental comparison on how well the given algorithms perform with few examples. Each
column shows the F1 score for the wrappers learned with the respective algorithms on a set of only 5 random
examples (each experiment is performed 5 times and the results are averaged). The first column indicates
the data set, while the second column indicates whether the algorithms LUTI, KL(opt.), and KL(est.) used
distinguishing contexts

Data set ctx LUTI KL (opt.) KL (est.) STALKER BWI

s1-1 89.1 100.0 100.0 92.2 100.0

s1-3 90.4 98.7 93.4 81.0 9.1

s1-4 78.8 100.0 100.0 93.1 42.7

s3-2 97.6 100.0 100.0 99.4 27.4

s3-3 98.2 100.0 100.0 96.3 6.4

s4-1 91.6 100.0 100.0 88.8 58.9

s5-2 93.8 98.9 94.7 91.3 27.6

s8-2 100.0 100.0 100.0 95.9 31.6

s8-3 100.0 100.0 100.0 91.3 96.6

s10-2 100.0 100.0 100.0 96.8 20.3

s10-4 100.0 100.0 100.0 96.3 10.8

s11-1
√

100.0 100.0 100.0 91.7 1.9

s11-2
√

100.0 100.0 89.4 8.1

s12-2 98.4 98.5 98.4 93.1 33.8

s13-2 100.0 100.0 100.0 95.9 38.7

s13-4 100.0 100.0 100.0 85.6 5.5

s14-3 99.5 100.0 100.0 78.0 14.1

s15-2 97.1 100.0 100.0 96.2 34.9

s19-4 100.0 100.0 100.0 100.0 17.2

s20-3
√

98.5 100.0 100.0 100.0 97.7

s20-4
√

97.5 100.0 100.0 99.6 100.0

s20-5
√

97.5 100.0 100.0 100.0 86.4

s20-6
√

98.5 100.0 100.0 84.0 100.0

s22-2 93.3 100.0 99.8 100.0 68.9

s23-1 97.6 100.0 100.0 87.5 99.5

s23-3 94.4 100.0 100.0 96.2 19.7

s25-2 97.2 100.0 100.0 93.5 20.9

s29-1 96.6 96.6 65.6 87.3 22.8

s29-2 100.0 87.8 36.8 60.7 28.4

s30-2 96.0 100.0 96.0 88.0 88.6

bigbook-2 94.3 100.0 97.3

bigbook-3 88.0 100.0 96.9

okra-1
√

100.0 100.0 100.0

okra-2
√

99.3 100.0 100.0

okra-3
√

99.1 100.0 100.0

okra-4
√

99.1 100.0 100.0
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highly regular, and therefore need only a few boundary detectors. For τ we used the values
0, 0.5, and 1, but found them to have very small influence. The training time increases ex-
ponentially with the lookahead. L is therefore a tradeoff between quality and time. We used
all values from 2 to 7. The LUTI algorithm has also two parameters: k and whether to use
distinguishing contexts or not. The results shown for both LUTI and BWI, are those with
the set of optimal parameters for each experiment (based on F1 score on the test set). The
context parameter for LUTI and KL (both opt. and est.) was always the same, and is given
in an extra column (ctx). Note that no results for STALKER are included for data set s11-2,
as this task contains alternative values, i.e., multiple elements to be extracted for the same
field within the sequence extracted for the parent tuple. This cannot be represented in the
embedded catalog formalism of STALKER.

Even though the parameterless version of the KL algorithm does not always reach op-
timal scores, it is only beaten in 4 of the 36 tasks. Three times by STALKER, and three
times by LUTI, while it beats LUTI 22 times and STALKER 23 times (on 29 tasks). Note
that using optimal parameters for LUTI and BWI is not fair when comparing them with
STALKER, but makes the results for KL(est.) stronger. Recall that STALKER also has the
advantage of getting extra information.

6 Learning the parameters

As shown in Sect. 5.3, our (k, l)-contextual tree language improves upon the local unranked
tree automata of (Kosala et al. 2003) by being able to learn from fewer examples. However, a
problem shared with (Kosala et al. 2003) is that the method needs parameter tuning for each
task. Selecting the optimal parameters requires to run the program on a set of completely
annotated documents to obtain precision and recall. Hence parameter selection is in fact
based on a large set of positive and negative examples.

Here, we describe how to learn parameters based on a small set of negative examples. In
addition, it is indicated when (k, l)-contextual tree languages are not expressive enough to
reach a 100% F1-score for the extraction task at hand.

Our algorithm finds the parameters k and l, such that the (k, l)-contextual language
learned from the positive examples is the most general one that still rejects all the nega-
tive examples.

6.1 Algorithm

Order relations We will use two order relations on languages. The first is the standard
set inclusion L1 ⊆ L2. Recall from Proposition 4 that this order is anti-monotonic in the
parameters. The second order is defined using a finite set S of trees. Let #acc(S,L) be the
number of trees from S that belong to the language L (the count). Then we define L1 ≥#

S L2

as #acc(S,L1) ≥ #acc(S,L2). Note that for any S we have L1 ⊇ L2 ⇒ L1 ≥#
S L2, hence ≥#

S

is also anti-monotonic in the parameters, i.e., the count decreases with increasing parameter
values.

Solutions In what follows, we denote with [k, l] the (k, l)-contextual language learned
from the given positive examples Pos. So, [k, l] equals L(k,l)(F(k,l)(Pos)). Any such set [k, l],
for some parameters k and l, is called a potential solution. If, moreover, [k, l] is consistent
with the negative examples Neg, i.e., if Neg ∩ [k, l] = ∅, we call [k, l] a solution. We define
a solution L1 to be better than L2 when it extracts more solutions from the documents used



174 Mach Learn (2008) 71: 155–183

to learn the wrapper; more formally, when #acc(S,L1) ≥ #acc(S,L2) where S has a tree
for each candidate node (with the candidate marked cf. Sect. 4.2). Hence the best solution is
the solution that is maximal in the order ≥#

S .

Heuristic Due to the anti-monotonicity, we have that #acc(S, [k, l]) ≤ #acc(S, [k − 1, l])
and #acc(S, [k, l]) ≤ #acc(S, [k, l − 1]), hence #acc(S, [k − 1, l]) and #acc(S, [k, l − 1])
are upper bounds on the value of #acc(S, [k, l]). The algorithm uses them to estimate the
value of #acc(S, [k, l]) and, at each step, computes the count of the language with the best
estimate. The search stops when the best estimate cannot improve upon the current best
solution.

Example 10 Let Pos be the singleton with as element a tree t derived from the tree of the
HTML example in Example 1, such that the node containing ’title1’ is marked. Some exam-
ples of potential solutions, given Pos are

[1,2] = L(1,2)

( )

,

[1,3] = L(1,3)

⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠ ,

[1,4] = L(1,4)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, and [2,4] = L(2,4)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Defining S as the set of trees derived from t that have a single node marked, #acc(S,L)

returns the number of nodes extracted from t by a wrapper based on L. For [1,2] the ex-
tractions from t are {title1, author1, title2, author2, title3, author3, Prev, 1, 3, Next}. Hence
#acc(S, [1,2]) = 10. The extractions for [1,3] are {title1, title2, title3, Prev, Next}, and
#acc(S, [1,3]) = 5. The extractions for [1,4] and [2,4] are {title1, title2, title3}, hence
#acc(S, [1,4]) = #acc(S, [2,4]) = 3. For the set {author1, 1} as negative examples, we
get that [1,3], [1,4], and [2,4] are solutions. From these, [1,3] is the best solution as it
is the most general (k, l)-contextual tree language accepting Pos and rejecting all negative
examples. With {Prev} as the set of negative examples, only [1,4], and [2,4] are solutions.
According to the heuristic, the count of [2,4] will be equal or smaller (equal in this exam-
ple), hence there is no need for the algorithm to check [2,4] after [1,4] is found.

Initialization All (k,1)-contextual languages extract all single node forks from the ex-
amples, hence are overly general and of no interest. Therefore, the search starts from the
(1,2)-contextual language as it has the largest count.

Algorithm To reduce the space requirements, our algorithm maintains for a given l-value
the count of at most one (k, l)-contextual language. If [k, l] is a solution, then the (k + 1, l)-
contextual language is of no interest as it has a lower count; if it is not a solution, then its
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Fig. 6 Parameter space and data
representation

count is discarded as soon as the count of the (k + 1, l)-contextual language is computed.
These counts are maintained in a front (of the search). For each l-value, the front maintains
the k-value (F.k[l]), the count (F.c[l]) and whether it is a solution (F.sol[l]) (see the right
of Fig. 6). In each step, the algorithm selects the minimal value l such that the language
[F.k[l], l] is most promising for exploration (the function BestRefinement): [F.k[l], l] is
not a solution and the estimation of its refinement has the highest bounds on its count. For
k > 1, the refinement is the language [F.k[l] + 1, l], however for k = 1, also [1, l + 1] is a
refinement.

Example 11 Given the data in Fig. 6, the languages [1,5], [4,3] and [5,2] are candidates for
refinement. Although [4,3] has the highest count, its refinement [5,3] has a count bounded
by 33 while both refinements of [1,5] have a count bounded by 48, hence the latter is
selected for refinement.

A final point to remark is that it is useless to consider a language [k, l] with k larger
than MaxK(Pos,Neg, l), the maximum branching factor for the forks of a given depth l

(it depends on l because only the forks containing the target are considered). Indeed, an
increase of k will not affect the number of extractions. The algorithm below achieves this
by setting the k-value at level l to ∞ and the count to 0 when refining it. When this happens
for all l values, then it means that no wrapper based on (k, l)-contextual tree languages is
expressive enough to reach a 100% F1-score. Note that there is always a solution when all
examples come from a single document. The final set of forks then becomes ultimately the
set of marked versions of the whole document.

The algorithm is sketched in Algorithm 2. F is the array representing the front as shown
in Fig. 6. For a given l value, the values F.k[l], F.c[l], and F.sol[l] give respectively the
k-value, the count and whether [k, l] is a solution. It is initialized for l = 2 with k-value 1.
The function BestRefinement(F ) returns the l-value of the best candidate for refinement (as
described above) if it exists, otherwise it either returns the l-value of the solution or reports
failure. The function calc(Pos,Neg, k, l) updates F [l] with the appropriate values. Note that
two refinements are computed when the selected best candidate has a k-value of 1. As long
as there are candidates for refinement (non-solutions) that have a larger bound than any of
the solutions already encountered, the BestRefinement will return a non-solution. Hence the
algorithm keeps searching for better (larger in the order ≥#

S ) solutions even though some
solutions are already found.

6.2 Learning with context

The preprocessing step to collect a set of distinguishing contexts, as described in Sect. 4.2,
ensures that the context increases with an increase in k or l. As the count of a wrapper
decreases with increasing context, the anti-monotonicity property is still valid and our algo-
rithm can easily be extended to learn a wrapper with context.
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Algorithm 2 Learning the parameters
Input: Pos and Neg, The sets of positive and negative examples.
Output: The parameters k and l of the wrapper.

1: calc(Pos,Neg, 1, 2) // initialization
2: bestL = 2
3: while not F.sol[bestL] do
4: if F.k[bestL]=1 then
5: calc(Pos,Neg, 1, bestL+1)
6: end if
7: calc(Pos,Neg, F.k[bestL]+1, bestL)
8: bestL = BestRefinement(F )
9: end while

10: return F.k[bestL] and bestL

Function: calc(Pos,Neg, k, l)
1: if k > maxK(Pos,Neg, l) then
2: F.k[l]=∞
3: F.c[l]=0
4: else
5: F.k[l]=k

6: W = learnWrapper(Pos, k, l)
7: F.sol[l]=W rejects all N

8: F.c = cnt(extractions(W ,Pos,Neg))
9: end if

Example 12 Given the document of Example 2, with a positive example that has ’Stefan’
marked, and a negative example that has ’Hendrik’ marked. Using no distinguishing contexts
the algorithm reaches a solution for (k, l) = (2,4), namely the language

L(2,4)

⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

,

while using distinguishing contexts a solution is reached for k = 2 and l = 3:

L(2,3)

⎛

⎜
⎜
⎝

⎞

⎟
⎟
⎠ .

Not all data sets need a context. In principle, one could learn the wrapper with context and
the wrapper without context independently of each other. However, our system integrates
both in one algorithm that maintains two fronts and selects the most promising point of both
for refinement. Note that, for a given point (k, l), the count of the wrapper with context is
bounded by the count of the wrapper without context; i.e., the latter value is used as an extra
bound on the count of the former (hence the selection is such that the former will only be
evaluated when that bound is already known).
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7 Induction with equivalence queries

Arbitrary sets of positive and negative examples often contain redundant information. It is
more efficient to use queries. The system will query the user for the information that it needs
to improve its hypothesis. In this section we present a system based on the algorithms from
previous section, that uses equivalence queries(Angluin 1988). For a given set of examples,
the system returns a hypothesis. The user is asked to indicate whether the hypothesis is
correct or otherwise to give a counterexample (a false positive or a false negative). Most
practical for the user is to check the already given pages or try out some new pages of his
own choice. When he detects an error, he can signal that error to the system. The system
keeps on updating its hypothesis until the user is satisfied.

In Sect. 7.1 we indicate how to adapt the algorithm of previous section for an efficient
interactive use. In Sect. 7.2 we discuss some details of the implementation of our system
and finally, in Sect. 7.3, we give an evaluation of its usability.

7.1 Interactive algorithm

After each interaction the system updates its hypothesis. This is done by finding the ≥#
S -

most general language that is consistent with the current set of examples. For this update
step we can use the algorithm from Sect. 6. However, an incremental algorithm is feasible.
This would certainly improve the timings in Table 2 (see Sect. 7.3).

Adding a positive example (a false negative) to the set of examples increases the set
of forks, hence the counts of all wrappers. However, a (k, l)-wrapper that covers negative
examples still does so and cannot become a solution. It means that the search of a solution
can start from the current front. The initialization of the new search for parameters consists
of updating the count fields (F.c) in the front.

Adding a negative example (a false positive) does not affect the set of forks. However the
solution is invalid as it covers the new negative example. After updating the (true) solution
fields (F.sol),4 the search can resume from the current front.

In short, the algorithm from Sect. 6 can be used. When a new example is received, the
values in the front are updated and the search resumes.

Example 13 Assume we want to learn the ’title’ task from Example 1. The user gives an
initial example. Let us assume he picks ’title1’ (same as in Example 10, such that we can
refer to the languages learned there). The system learns its first hypothesis and ends up with
language [1,2]. We see that in our example page, all title fields are marked, hence there
are no false negatives. We could check on some other pages, however, the current page has
several false positives: {author1, author2, author3, Prev, 1, 3, Next}. The user chooses one
of them. The system (see the description of the implementation below) disallows the user to
mark true negatives like ’search term’ and ’2’ as negative examples. The algorithm updates
its hypothesis. Example 10 shows that not every choice is equally informative. Choosing
’Prev’ or ‘Next’ leads to the solution [1,4], while all other false positives lead to [1,3],
necessitating an extra iteration. After reaching [1,4], the user cannot find other counterex-
amples in the given page. He may try other pages until he is convinced that the wrapper is
indeed correct.

4When the example is from a new document, also the counts are updated.
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7.2 Implementation

Representing the wrappers as sets of forks is straightforward, and works fine most of the
time. For some tasks (requiring large k and l-values, and with pages with a large branching
factor), the time for learning and extraction becomes noticeable and becomes an annoyance
in an interactive application.

We developed an implementation that represents the wrappers by unranked tree automata,
enabling the use of extraction in a single run described in (Raeymaekers and Bruynooghe
2004a). This substantially reduces the memory consumption and the execution time without
affecting the language accepted by the wrapper. An algorithm capable of learning tree au-
tomata directly from the example trees instead of first extracting the set of all (k, l)-forks, is
given in (Raeymaekers and Bruynooghe 2006).

We added a graphical user interface to our application, which is basically a HTML-
compliant browser, that allows the user to right-click on an element of the page to add
an extra example. The system colors the background of all elements that are extracted by
its hypothesis. A click on a colored element is interpreted as a false positive, a click on a
plain element is interpreted as a false negative. This way the user is restricted to give only
counterexamples to the equivalence query posed by the system.

7.3 Evaluation

In this section we evaluate the cost of this interactive system, and we compare with Ag-
gressive Co-Testing (see Muslea et al. 2003), an active learning approach on top of the
STALKER algorithm.

Typically, a wrapper is found starting from a single page. Extra page views (random
or those the user suspects to contain an exception) can help to learn possible exceptions.
The ease of indicating a counterexample invites the user to choose the first error he spots.
Checking whether on a page all targets and no other fields are marked can amount to a
substantial amount of checks. However, with the graphical representation, and given that the
layout of the target fields is mostly regular, an uncolored target field, or a colored element
that is not a target field, really sticks out and the human pattern recognition ability is able
to spot an anomaly in a glance (or after a quick scroll for larger pages). In our experimental
evaluation we therefore use the number of counterexamples given by the user as a measure
for the interaction.

The setup of our experiments is as follows. Initially a single random example is given
to the algorithm. On every iteration, the algorithm learns a new hypothesis. The user input
is simulated by taking a random element from the set of false positives and false negatives.
The algorithm stops, when a 100% F1-score is obtained (no more false positives or false
negatives). We use the same tasks as in the experiment of Sect. 5.3. Each task is performed
30 times with random examples, the results are averaged. In Table 2 we show the number
of interactions that are needed to learn the wrapper. The first column of the table contains
the data sets. For the interactive (k, l)-contextual algorithm we include a column to indicate
the numbers of positive and negative examples5 needed (averaged), columns to show the
learned k and l (these were the same for all 30 runs), and a last column to indicate the total
time needed by all the learning steps in Algorithm 2, also averaged over the 30 runs.

The nodes in the local context of a field typically have modest branching factors. When
the parameter l becomes larger, the forks will escape the local context around the target, and

5P/N = 1/0 means that the initial (1,2)-wrapper derived from only one positive example is a solution.
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might include nodes with higher branching factors, leading to more complex tree automata.
Even though a local solution is found, the algorithm keeps trying higher l-values, to make
sure that no better solution exists. This explains some of the larger timings. For data set s29-2
the timings are exceptionally large (often larger than 30 minutes). We therefore used the
following alteration to the basic algorithm: If a solution is already found, and the algorithm
takes longer than 5 seconds, interrupt the algorithm and return the best solution so far. Hence
for set s29-2 we show only the final parameters and the number of interactions, but no
timings.

Before describing the experimental setup with Co-Testing, we briefly introduce this ap-
proach. In Co-Testing multiple views on the data are defined. A hypothesis is learned in each
of the views. For a set of unseen, and unmarked data, contention points are defined as the
examples on which hypotheses disagree. A query about a contention point will improve at
least one of the hypotheses. Applied on STALKER, 2 views are used. Each boundary can be
described by a forward rule or by a backward rule. The Naive Co-Testing approach picks a
random contention point, while Aggressive Co-Testing tries to pick a contention point that is
likely to be wrong for both views, such that both hypotheses can be improved. To order the
contention points, patterns are learned on the content of the example fields. Content points
that differ most from these patterns in both views, are chosen first.

The setup in (Muslea et al. 2003) is to learn a wrapper for the extraction of the target field
from its parent in the Embedded Catalog, and not to learn every extraction task in the hierar-
chy. We also refrain from using this setup, as the application of Co-Testing on list-extraction
is not detailed in the paper, and the induction of the extraction tasks in the top of the hi-
erarchy becomes impractically slow. Each example is therefore a small subsequence of the
whole document containing exactly one target element. An example for the title extraction
task from Example 1 could be the following sequence matching the paper field, with ’title1’
marked.

title1</a></b> <a>author1
Hence the algorithm learns from, and the learned wrapper will extract from, the sequences
extracted for the parent (paper) of the title field (see Fig. 5).

Each induction task start with two random examples. As long as contention points ex-
ist, the Co-Testing approach asks the correct solution for one of the parent sequences (one
containing the chosen contention point). Each induction task is performed 30 times, and the
results are averaged. These results are also shown in Table 2. Column ’P’ shows the average
over all runs of the number of positive examples (the two random initial examples, plus the
queries by the algorithm). Note that for data set s13-4, we stopped the algorithm after 100
queries, hence no 100% F1 score was reached. For data set s29-2, the algorithm did stop, but
also no 100% F1 score was reached. This implies that in this data set both views made the
same mistake, such that no extra contention points could be found. The last column holds
the average time in milliseconds for the total of all induction steps in a single run. Again,
these induction times are on subsequences of the document, while for the interactive KL,
they are on the whole document.

Although the type of interactions are different (equivalence query opposed to a single
query on a subsequence), we believe that the work for the user is almost the same. Hence we
feel justified to point out that our proposed algorithm needs significantly less user interac-
tions than Co-Testing. Also the timings show that the system is highly responsive and suited
for interactive use.
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Table 2 This table shows the number of interactions needed to learn the wrappers with either the interactive
version of the (k, l)-contextual learning algorithm, and STALKER with Aggressive Co-Testing. The P/N

column indicates the number of positive and negative examples needed to reach 100% F1 score, always
starting from a single positive example. The results were averaged over 30 random runs. The resulting k and l

parameters were the same in each run, and given in the columns k and l. The P column shows the number of
positive examples requested by the Co-Testing algorithm, with a minimum of two for the two random initial
examples. The results were also averaged over 30 random runs

Data Interactive KL Co-Testing

set P/N k l ms P ms

s1-1 1/1 1 3 21 2.5 35

s1-3 4/1.7 3 3 642 7.7 1595

s1-4 1/0 1 2 5 8.7 7376

s3-2 1/1 1 3 12 2.5 190

s3-3 1/0 1 2 4 2.5 77

s4-1 1/0 1 2 2 30.8 266528

s5-2 1/1 1 4 19 6.9 405

s8-2 1/1 1 3 12 2.3 9

s8-3 1/1.3 2 3 43 3.4 554

s10-2 1/1 1 3 9 3.0 34

s10-4 1/1 2 2 15 8.8 35072

s11-1 1/2.1 2 4 4191 80.3 4220

s11-2 1/1.6 2 4 732

s12-2 2/1.4 1 4 43 8.8 515

s13-2 1/1 1 3 10 2.6 23

s13-4 1/1 2 2 15 100+ 1387720

s14-3 1/0 1 2 3 5.6 441

s15-2 1/0 1 2 2 18.3 3912

Data Interactive KL Co-Testing

set P/N k l ms P ms

s19-4 1/1 1 3 7 2.1 8

s20-3 1/0 1 2 3 2.8 29

s20-4 1/1.3 2 3 198 3.1 51

s20-5 1/2 2 3 1142 3.0 53

s20-6 1/1.3 2 3 44 3.1 3024

s22-2 1/1 1 4 26 3.77 88

s23-1 1/1 2 3 39 3.6 132

s23-3 1/1 1 3 12 8.8 382

s25-2 1/1 1 3 6 7.6 1246

s29-1 2/1.6 2 3 125 10.4 179879

s29-2 4.8/2.9 4 3 15.9 114784

s30-2 2/1 1 3 12 2.5 5

bigbook-2 2/2 2 5 574

bigbook-3 1/1.3 2 4 100

okra-1 1/1.6 2 3 37

okra-2 1/1 2 3 118

okra-3 1/1.4 2 3 66

okra-4 1/1 2 3 103

8 Further work

The system presented in Sect. 7, is rather a proof of concept and a research tool than an
industrial strength wrapper induction system. The system lacks support for sub-node extrac-
tion, and the ability to extract the different fields of a tuple as a single entity. As mentioned
before, our approach is intended to be modular. We believe it is easier and possible to solve
these different problems separately.

We distinguish two cases in sub-node extraction. Either we have a text node, and we need
to extract a substring of that text node, or we have an internal node, containing a subtree, and
we need to extract a sequence that starts inside some text node in the subtree, contains some
other nodes in the subtree, and ends in another text node in that subtree. A hybrid approach
will learn to find the node that contains the field, and use a string approach to find the cor-
rect subsequence. In the second case, it might be interesting to learn to extract the first, and
the last text node in two separate tasks, and then use an string approach to learn the start-
ing boundary within the first text node, and the ending boundary in the second one. Some
small scale experiments with manually crafted experiments to simulate a hybrid approach
indicated a better performance on sub-node tasks by a hybrid approach using STALKER in
comparison with STALKER alone.

In contrast to a hybrid approach we could also extend the tree formalism in the (k, l)-
contextual approach. Every text node can be replaced by the root of a subtree that contains
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the tokens in that text node as children. The extraction task will become a dual extraction
task. Extracting the initial token (which has become a node in the tree), and extracting the
last token (also a node). Presumably extending the single wildcard towards a hierarchical
wildcard type system as in string based methods will be beneficial.

The integrated approach in STALKER to extract fields and tuples, has some drawbacks,
as the general structure of the document can only be described in terms of lists and tuples.
We encountered the problem of alternative values (see data set s11-2 in Sect. 5.3). Also op-
tional values are difficult, the algorithm extracts a single field from each element extracted
as parent of that field (see embedded catalog in Sect. 5.1), and when no element is present,
some false positive might be returned. The fields of different tuples might even appear in-
terleaved in the sequence that represents the document (for example tuples occupying the
columns of a table), which is also not representable as an embedded catalog.

We believe it to be more flexible to add a tuple aggregation procedure on top of a sin-
gle field extraction approach. This introduces a new learning task. Based on extracted fields
and a user giving some examples of which fields belong to which tuple, a tuple aggregator
should be learned. Different approaches are possible. If the fields of an example tuple share
a common ancestor different from the ancestors from other fields, this common node could
be learned for each tuple as a node extraction task. The (k, l)-contextual approach seems
perfectly fit, and the extraction of the common node would be independent of the extraction
of single fields, preventing accumulation of errors. Another approach is to find a regular-
ity in the sequence of extracted elements. For Example 2, this sequence is [N(Stefan)],
[S(Maurice)], [N(Anneleen)], [S(Hendrik)] (with N the marker for the name field, and S
the marker for the supervisor field). An aggregator induction algorithm has to learn that a
tuple consists of a subsequence of fields starting with an N-field, and ending with an S-field.
This approach works also when tuples share all the same ancestors. It seems that these two
approaches alone would solve most of the aggregation tasks in the WIEN data sets. This is
no general solution, and needs further investigation. At least this framework allows for an
easy exchange of aggregation policies.

9 Conclusion

We have introduced a new subclass of the regular unranked tree languages, called (k, l)-
contextual tree languages, that is learnable from positive examples only. We applied this
class of languages to the problem of wrapper induction by representing a wrapper as a
language of marked trees. We situated our approach between other wrapper induction ap-
proaches, and made an in-depth comparison with two string approaches (STALKER, and
BWI) and another unranked tree approach (Kosala et al. 2003). The latter corresponds to
(k,2)-contextual tree languages; they lack expressivity and their authors tweak the repre-
sentation of the documents by annotating the path from the root to the target node. An
experiment learning wrappers from a small set of positive examples shows that wrapper
induction based on (k, l)-contextual tree languages usually yields a better wrapper.

Both our new algorithm as (Kosala et al. 2003) need to tune parameters for each task.
In (Kosala et al. 2003) this is solved by evaluating wrappers on a sufficiently large set of
completely annotated documents (representing positive and negative examples) to find the
optimal parameter setting for a given extraction task. We developed a technique that learns
a good parameter setting from a small set of positive and negative examples.

Another limitation of (Kosala et al. 2003) was the need for an ad-hoc preprocessing
step to identify a so called distinguishing context that in some applications is needed to
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disambiguate positive from negative examples. We developed a technique that preserves
text nodes close to the target node when they occur in all examples.

We integrated the algorithm in an interactive system that allows a user to build a wrapper
by selecting an initial positive example, and possibly a small number of false positives or
false negatives, in sample documents. Experiments show that the resulting system is indeed
able to learn a wrapper from a few positive and negative examples for a large number of
extraction tasks, and compares favorably with regard to an active learning approach based
on STALKER. Interestingly, the system indicates failure when the extraction task is not ex-
pressible as a (k, l)-contextual tree language. In this case, one could switch to more expres-
sive languages, e.g., the tRPNI algorithm (Carme et al. 2004) that needs a set of completely
annotated documents (so far we have not met an existing data set requiring this).
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