Mining frequent tree-conjunctive queries in large graphs

Jan VVan den Bussche, Limburgs Universitair Centrum
joint with

Bart Goethals, University Antwerpen

Eveline Hoekx, Limburgs Universitair Centrum



Graph data

A (directed) graph over a set of nodes N is a set G of edges:
ordered pairs (7,7) with 4,7 € N.



e

eicr)






Graphs are

data structures
hypertext documents
social networks

protein structures

everywhere!

e transportation networks
e World Wide Web

e food webs



Mining for patterns in graphs

Q1. Given a class C of graphs, which patterns typically occur
frequently in graphs in C7?

Q1 has become a very hot topic over the past years (Science,
Nature)

To do Q1 well we must at least be able to do:
Q2. Given a graph &, which patterns occur frequently in G7
This can be interesting in itself. We will focus on Q2.

Q3. Given a collection C of graphs, which patterns frequently
occur in graphs in C?



Mining for patterns in graphs

Q1. Given a class C of graphs, which patterns typically occur
frequently in graphs in C?

Q1 has become a very hot topic over the past years (Science,
Nature)

To do Q1 well we must at least be able to do:
Q2. Given a graph &, which patterns occur frequently in G7
This can be interesting in itself. We will focus on Q2.

Q3. Given a collection C of graphs, which patterns frequently
occur in graphs in C7?



Examples of patterns

0 ~—8&

frequency: #{z | (x,8) € G}



Examples of patterns

8<«—0O

frequency: #{z | (0,z) € G}



Examples of patterns

frequency: #{(z,y) | (z,8) € GA(8,y) € G}



Existential nodes in patterns

:13/3\8

frequency: #{z |3z : (z,2) € GA (2,8) € G}



Existential nodes in patterns

frequency:

#{x | 21,221 (0,21) € G A (21,22) € GA(22,7) € G}



Our work
Efficiently mine all frequent tree-shaped patterns in a large graph
e Incremental in size of patterns
e [ree-shaped only, but with existential nodes
e Database approach: on top of SQL
e Mining results stay in database
e Provable optimality properties

e Underlying theory of conjunctive queries



Avoiding isomorphic trees

T1 L1

LN, LA
e LA
:cl6 xl4

— (Generate only canonical trees: “left-deep”



Generating all canonical trees

A. If T is canonical and n is its last node, then 7" — n is also
canonical.

— Generate canonical trees incrementally by size

B. All canonical extensions of a given canonical tree can be
generated efficiently.

e All this is known for a long time!

e For general graph shapes, no such efficient canonization is
known.



Generating all canonical trees

17X T3 T X4

_~ T4
r1 X > X3 331—’332\
3
> X4
1 > XD Tl — .
D 3
T4
_~ T3 -~
4 i) \



Equivalent patterns

AT
i« g 3/ \z z

e [woO patterns are equivalent if they become identical after
removal of redundancies.

= Efficient redundancy check needed



Redundancy characterization

A pattern has a redundancy if and only if contains the following
pattern:

where subtree 7' is at least as deep as the d-path.
e Efficiently checkable

e For general graph patterns, redundancy checking is NP-complete



Overall approach
Generate canonical trees of increasing size
Generate (non-redundant) projections
Generate selections

Count all instantiations with one SQL expression

A ANAY
:cl3 :Ul3 :cl3 xlg)

canon. tree projection selection instantiation



Levelwise generation of projections

/\

Ty T4



Levelwise generation of projections

/\

Ty T4



Levelwise generation of projections

/\

L
FANELYAS

R

3 3 -



Levelwise generation of projections

AN

R

3 - xr3



Levelwise generation of selections



Levelwise generation of selections



Levelwise generation of selections



Pattern tables

= co c4 count
/ \ 66 77 240)
66 78 24
C2 ¢4 :
L3

In each row of the table,

count = #{333 | dxq : (:L‘l,CQ) SHEW (02,x3) SN EW (901,04) S G}



Computing the pattern table in SQL

1. Initalize with natural join of parent pattern tables

parent patterns of = are - = =
/\ /N /NN
cCo cC4 Co C4 CO T4 ITo C4
l I
T3 T3 T3 T3

2. Compute counts with one SQL expression



SQL expression

Graph G stored in table G(from,to)

select tab.c2, tab.c3, count(*)
from (select table.c2, table.c3, G3.to
from G G2, G G3, G G4, table
where G2.from=G4.from and G2.to=G3.from
and G2.to=table.c2 and G4.to=table.c3)



Optimality properties
1. We never investigate distinct but equivalent patterns

2. We never investigate a pattern subsumed by another pattern
that we already know to be infrequent

e Incremental and levelwise approach

e Subsumption for general graph patterns is NP-complete



Current work
Database performance tuning
Apply to real-world graph data
Pattern browsing

Association rules

pattern l versus rule

-]



