
The DNA Query Language DNAQL

Robert Brijder, Joris J.M. Gillis,
∗

and Jan Van den Bussche
Hasselt University & transnational University of Limburg

jan.vandenbussche@uhasselt.be

ABSTRACT
This paper presents an exposition of the authors’ past and
present work on the query language DNAQL for querying
databases in DNA. In DNA computing, data is represented
and stored in DNA molecules. Accordingly, a logical data
model is defined that models complexes of DNA molecules
in a graph-oriented fashion. Next, a set of formal operations
on DNA complexes is defined, much in the spirit of the oper-
ations of the relational algebra in the relational data model.
These operations model laboratory operations on DNA in
solution. Their combination leads to the query language
DNAQL; but in order for programs to be well-defined on
prescribed types of inputs, a type system is superimposed
on the language. Finally a correspondence is shown between
well-typed DNAQL programs and programs in a relational-
algebra query language.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design—Data
models; H.2.3 [Database Management]: Languages
—Query languages; D.3.3 [Programming
Languages]: Language Constructs and Features—Data types
and structures

General Terms
Theory

Keywords
DNA computing

1. INTRODUCTION
DNA Computing is an interdisciplinary scientific field,

composed of mainly of computer scientists, chemists and
physicists. Various good introductions to the field are avail-
able in books [24, 2], in survey articles [16], and on the Web.

∗Ph.D. fellow of the Research Foundation–Flanders (FWO).

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
EDBT/ICDT ’13 March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1598-2/13/03 ...$15.00.

The field is often placed within the larger field of Natural
Computing [28, 20, 26] and is also increasingly becoming
associated with the related field of nanotechnology. Recent
research results in DNA Computing can be obtained from
the proceedings of the annual International Conference on
DNA Computing and Molecular Programming, as well as
the Annual Conference on Foundations of Nanoscience, and
the specialized journal Natural Computing. We also rec-
ommend the annotated list of publications [11] from Erik
Winfree’s group on DNA and Natural Algorithms at Cal-
tech, which is a leading laboratory in the field since the
beginning.

DNA Computing became popular with Adleman’s exper-
iment [1] which gave a molecular solution to a small in-
stance of the Hamiltonian Path problem. The two important
lessons from this experiment are, first, that synthetic single-
stranded DNA molecules can be used to represent structured
data, such as the edges of a directed graph, and, second,
that hybridization of two complementary single strands into
a double strand (the famous double helix) can serve as a
powerful computational primitive. Since the Hamiltonian
Path problem is NP-complete in general, Adleman’s exper-
iment created the impression of DNA Computing as an ap-
proach to solving NP-complete problems. That view was
quickly abandoned, however, as well as the view of DNA
Computing as a platform for general-purpose computation,
the latter mainly due to the difficulty of controlling the error
rates. The currently dominating view of DNA Computing
is that of a platform for programmed self-assembly at the
nanoscale.

Yet the two main lessons from Adleman’s experiment re-
main valuable, and the robust (almost indestructible) stor-
age capacity of DNA at the nanoscale [14, 18] remains very
tempting from the databases perspective. The potential
use of single-stranded DNA as an addressable or searchable
memory is indeed well known [4, 25, 13]. Databases, how-
ever, are much more than searchable memories: they are
structured according to a logical data model such as the
relational model, and are queried and manipulated using
global operations on data such as the operations of the re-
lational algebra. In this paper, we present an exposition of
our recent work [17, 8, 9] on developing a logical data model
for DNA computing, along with a tractable query language
called DNAQL. We will also briefly mention some recent
results that show a quite satisfying correspondence between
the crucial operation of hybridization in DNA computing,
and the crucial operation of join (or cartesian product) in
the relational algebra.

Our exposition is largely on an intuitive level; the full
formal details can be found in our 67-page report [6] and
a forthcoming paper on the expressive power of DNAQL.
This work will also be part of Joris Gillis’s forthcoming PhD
thesis at Hasselt University.

2. DNA, HYBRIDIZATION, AND
REPRESENTATION OF
RELATIONAL DATA

Single strands of DNA are modeled as strings over the
alphabet {A,C,G, T}. The individual positions in such a
string are referred to as the bases. A very important con-
cept is Watson-Crick complementarity, whereby A and T are
complementary, as well as C and G. We indicate comple-
mentarity by overlining, writing Ā = T , T̄ = A, C̄ = G, and
Ḡ = C. Complementation is extended to entire strings by
complementing each base, then reversing the string. Thus,
AACTG = ḠT̄ C̄ĀĀ = CAGTT . Note that for any string
we have ¯̄s = s.

Two complementary single strands that encounter each
other in a watery solution under natural conditions will hy-
bridize to form a double-stranded duplex: the famous double
helix. Hybridization happens through the process of base
pairing, in which the two strands will align with each other
in opposite directions allowing complementary base pairs to
form bonds. The same happens more generally when a sub-
string of one strand is complementary to a substring of the
other strand. Thus, AAAACTG and AACAGTT will hy-
bridize to the following:

AAAACTG
TTGACAA

Here the two strands stick to each other in five base pairs.
A minimal number of consecutive base pairs is needed

for the sticking to be robust; this number depends on the
temperature. Indeed, base pairing can be undone by rais-
ing the temperature, and accordingly, higher temperatures
are needed to undo the sticking of longer consecutive sub-
strings of base pairs. The temperature at which a sticker
detaches is called the melting temperature of the sticker; it
actually depends not only on the length but also on the ac-
tual sequence. The process of going from double-stranded
to single-stranded DNA is known as denaturation.

Working with just a four-letter alphabet {A,C,G, T} is
a bit awkward for data representation. Hence in practice
we work with with a larger alphabet, where every letter is
encoded by a single DNA string called a codeword. The
set of codewords should be well behaved, in that all code-
words should have the same length, have similar melting
temperatures, and should stick only to their own comple-
ment. Specifically, we do not want a codeword to stick to
other codewords or their complements, or to concatenations
of those. The design of DNA codewords, being crucial for
successful DNA computing, is a research topic in itself [5,
15, 27, 29]. From now on we will understand that all finite
alphabets are coded in DNA. So, a string over such a finite
alphabet is to be understood as a concatenation of the DNA
codewords corresponding to the sequence of letters in the
string.

Atomic data values can thus be represented by fixing a
finite alphabet Λ of value bits and representing atomic data
values as strings of value bits. We can also naturally rep-

resent tuples as strings over a finite alphabet. Thereto, we
introduce two additional finite alphabets Ω of attributes and
Θ of tags. Attributes are, as in the relational data model,
chosen depending on the application. Tags are used as ad-
ditional “punctuation marks” that will later be seen to facil-
itate the manipulation of strings. In our work, it will suffice
to use a fixed set of nine tags Θ = {#1,#2,#3,#4,#5,#6,
#7,#8,#9}. We denote the combined finite alphabet Λ ∪
Ω ∪Θ by Σ.

Now let t be a tuple over a relation scheme R ⊆ Ω, where
each attribute value t(A), for A ∈ R, is a string of value bits.
Let us put the attributes of R in some agreed upon order
A, . . . , B. Then we agree to represent t as a string over Σ,
denoted by complex (t), defined by

complex (t) = #2A#3t(A)#4 . . .#2B#3t(B)#4.

So, the tuple is represented as a concatenation of attribute-
value pairs, where each attribute-value pair is initiated with
#2, then comes the attribute, and then comes the attribute
value flanked by #3 on the left and #4 on the right. We
use the terminology of “complex” because a string is a very
special kind of complex as we will define later. Naturally we
can now represent a relation r over R, i.e., a set of tuples over
R, by a set of strings over Σ, also denoted by complex (r),
and defined by complex (r) = {complex (t) | t ∈ r}.

Here, a set of strings is a model for the content of a test
tube containing the corresponding DNA single strands (typ-
ically in surplus quantities) in solution.

3. DATA MANIPULATION BY
DNA COMPUTING

We have seen how relational data may be represented in
DNA in a straightforward manner, but this alone is not sat-
isfactory. We want to operate on the data using natural op-
erations on DNA, most notably hybridization, but also oth-
ers, such as splitting DNA strands, or filtering out strands
satisfying some condition.

Note that in a test tube containing just the tuples of a
relation and no other material, no spontaneous hybridiza-
tion is possible. Indeed, all strands are composed of code-
words only, so there is no complementary material present.
To make this more formal, let us refer to Σ as the positive
alphabet and let us consider the complementary negative al-
phabet Σ̄ = {ā | a ∈ Σ}. So, each ā is the Watson-Crick
complement of a. Any string of negative letters can now be
used to function as a sticker. In our work, however, we found
that we can make do with stickers of at most two letters, so
we formally define a sticker as a string consisting of just one
or two negative letters.

The simplest use of stickers is to perform an operation
known as affinity separation in the biotechnological world;
in database terms we can think of it as a selection, as in the
relational algebra. Let a ∈ Λ be a value bit, and consider
the sticker ā. Let us add surplus quantities of ā into a test
tube x containing a relation instance r, i.e., x = complex (r).
The stickers will bind, by hybridization, to all value bits a
in the instance. If we now would have a way to retrieve all
strands that are bound to a sticker, and afterwards are able
to detach the stickers, we obtain the result of the selection
σθa(r), where θa is the condition that one of the attribute
values contains the value bit a.

3.1 Probing, flushing, and cleaning
In the above we assumed that one can effectively retrieve

the strands that bind to a sticker. This can be achieved by
immobilizing the stickers, prior to bringing them in contact
with the strands. Here, by immobilizing we mean affixing to
a physical substrate that we, humans, can handle mechan-
ically, as opposed to pure free-floating molecules which are
too small to handle directly. For example, stickers can be
affixed to a surface, over which the solution can flow; this
is what happens in so-called DNA chips. Or they can be
affixed to microscopic magnetic beads, which are immersed
in the solution but which can be recovered by applying a
magnetic force.

All that is important for us is that, once a strand binds
to an immobilized sticker, which we call a probe, the entire
complex formed by sticker and strand now becomes immo-
bilized, so that we can separate them from the strands that
did not bind and thus are not immobilized. The operation
of keeping only the immobilized complexes, washing away
the rest, is a primitive operation in our model, called flush.
Probes are distinguished constants in our model. Adding
a probe to a test tube is accomplished by the union opera-
tion ∪, another primitive operation of our model. Finally,
also the crucial hybridization reaction by which the strands
bind to the probes is an explicit operation in our model. We
can thus summarize the procedure discussed so far by the
following DNAQL expression:

e1 = flush(hybridize(x ∪ immob(ā))).

It remains to detach the retrieved strands from the probes.
This can be achieved by denaturing (raising the tempera-
ture), then again separating the free-floating complexes from
the immobilized ones, but this time dismissing the latter and
keeping the free-floating ones. In our model we call this op-
eration cleanup. Thus the selection σθa(r) is expressed in
DNAQL as cleanup(e1) with e1 the expression from above.
Actually, cleanup is more complicated in that it keeps from
the free-floating strands only the longest ones. Biotechni-
cians can implement this using a procedure called gel elec-
trophoresis.

3.2 Ligation and nontermination
In the previous section we have seen how length-one stick-

ers can be used as probes, so that hybridization is used to
compute selection-like queries. We next see how length-two
stickers can be used to staple two strands together, so that
hybridization is used to perform join-like operations.

Consider two relation instances r and s over disjoint rela-
tion schemes R and S respectively, and consider their repre-
sentations in DNA x = complex (r) and y = complex (s). Let
us take their union x ∪ y and add surplus quantities of the
sticker #4#2. Since each strand ends with #4 and begins
with #2, the stickers will tie together pairs of strands. For
example, let R = {A,B} and S = {C,D}, then for any pair
t1 ∈ r and t2 ∈ s the following complex will be formed by
hybridization:

t1 t2

#4#2

However, after denaturing (operation cleanup), the two tu-
ples would be separate again, since they are not actually
concatenated, but just held together by the sticker. To truly

concatenate two strands that are already held together, one
applies a natural enzyme called ligase. The application of
ligase is another primitive operation of DNAQL, called lig-

ate.
The above can be summarized by the DNAQL expression

e2 = cleanup(ligate(hybridize(x ∪ y ∪ {#4#2}))).

The composition of the three operations hybridize; ligate;
and cleanup occurs often and we abbreviate it by connect,
so e2 would become connect(x∪y∪{#4#2}). This program
does not behave as desired, however. The attentive reader
will note that the sticker might also stick to other occur-
rences of #4 and #2 than those at the end of one strand
and the beginning of another. Moreover, nothing prevents
the hybridization to go into a chain reaction, forming com-
plexes not of two, but of three, or four, indeed any number
of strands may be joined using multiple copies of the sticker.
We say that this application of hybridize is nonterminat-
ing.

To avoid nontermination, we can give each strand from
x a unique ending, and every strand from y a unique be-
ginning, using the extra tags from the alphabet Θ that
we have to our disposal. We can add a #5 at the end of
each strand of x, and add a #1 in front of each strand of
y, by the expressions ex = connect(x ∪ {#4#5,#5}) and
ey = connect(y∪{#1#2,#1}). We can now safely concate-
nate pairs (t1, t2) of tuples t1 from r and t2 from s by the
program

e3 = connect(ex ∪ ey ∪ {#5#1}).

3.3 Blocking and splitting
The program e3 would correctly compute complex (r× s),

were it not for the two tags #5#1 that sit in the middle
of each strand. These tags were instrumental in avoiding
nonterminating hybridization, but now we should get rid of
them again. In biotechnology one employs restriction en-
zymes which can split complexes at designated points that
occur before or after designated substrings. Since restric-
tion enzymes are obtained from nature, there is only a lim-
ited repertoire of them available. Hence, a realistic abstract
model of DNA computing should not simply assume that
splitting can occur anywhere. In our work we have found
we can make do with five split points, and perhaps by clever
programming this number could even be reduced further.

To get rid of #5#1, we cannot simply split before #2

(which follows #1 in each strand in the result of e3) and
after #4 (which precedes #5), for then we would undo the
concatenation of the two tuples. The solution is to circular-
ize the strands before splitting them, so that the two tuples
remain together after splitting. This is illustrated in Fig-
ure 1. Intuitively, we circularize by concatenating the end
of t2 to the beginning of t1. However, we can not again avoid
nonterminating hybridization as above, by introducing new
tags in the middle, as our current job at hand is precisely to
get rid of tags in the middle!

Instead, we now use the naive sticker #4#2, but prevent
it from sticking in undesirable places by blocking all bases
except for the initial #2 of t1 and the final #4 of t2. By
blocking a contiguous substrand, we mean to make it so
that bases on a blocked substrand can no longer engage in
further hybridization. A simply way to achieve this is by
making the blocked substrand double-stranded. One applies

#3

#4 #2

#4#2 t2(D
)
#3

A

#5 #1

D

t1 t2

Figure 1: Getting rid of #5#1 by circularization.
The figure shows many things at once that in reality
happen consecutively. First, we block from A to D,
indicated by the bold line. We then bind the strand
to the probe immob(#3), the immobilization indicated
in the figure by a black half-disc. We add the sticker
#4#2 and let operation connect produce the circular
strand. At that point we are safe in splitting at the
two points indicated by the arrows.

the enzyme polymerase for this purpose.1 In DNAQL we
have two primitive operations for blocking: blocka blocks
each single occurrence of the letter a given as parameter, and
blockfroma blocks everything starting at every occurrence
of a and stopping at any letter b that was already blocked
earlier by an operation blockb (or running until the end).

This blocking avoids the sticker to stick to unwanted oc-
currences of #4 and #2, but still does not avoid nontermi-
nating hybridization. Our proposed solution is to block a
little less than indicated above, from attribute A on t1 until
attribute D on t2, and binding the only remaining free tag
#3 (situated near the end of t2) to a probe immob(#3). Our
model then makes the hypothesis, inspired by experimental
results [3], that complexes bound to different probes cannot
hybridize. As a result, there are only two possible effects for
each strand: either the sticker circularizes the strand, or one
copy of the sticker sticks to the beginning and another copy
sticks to the end. The first effect is the desired one; the sec-
ond effect is still undesired, but its resulting complexes can
be removed later by splitting them up in little pieces which
are then removed by a final cleanup. A basic assumption of
our model is that every possible complex is present in sur-
plus quantities, so we obtain the result of the first effect for
each strand as well.

We omit the final detailed program for cartesian product;
we also note that the procedure described above produces
tuples with attributes in the order C,D,A,B. In order to
do further operations, such as the difference operation, it is
important to be able to shuffle the attributes in a different
order. We have invented a procedure to do so, based on
an original use of stickers. Since the procedure is rather
intricate we omit it from the present paper [17, 6].

1To implement blocka we hybridize with a dideoxy-variant
of ā.

3.4 Difference
DNAQL includes a difference operation much like that of

the relational algebra. In DNAQL we can only take the dif-
ference of two sets of DNA complexes on condition that each
set consists exclusively of single strands, and all strands must
have the same length. The implementation of this operator
is based on a technique known as subtractive hybridization.
This operation is expensive and error-prone, which draws an
interesting parallel to the situation in the relational algebra,
where queries that use the difference operator are typically
harder to optimize.

3.5 Dimension and for-loops
With the DNA operations seen in the previous section,

one can perform all the operations of the relational algebra,
with the exception of equality selection. In Section 3.1 we
have seen how the selection σθa(r) can be performed, but
this is much weaker than a full equality selection σA=B(r).
To be able to do this we need to be more precise about how
attribute values are represented. We have already agreed
that they are represented as strings of value bits, but we
have not been specific yet about the length of these strings.
For any natural number `, let us call `-instance any database
instance where all attribute values are words of length `. We
call ` the dimension of the instance; one may think of the
dimension as the analogue of the word length in a digital
computer. Of course, it will be important to allow instances
of any dimension, since for any fixed dimension, and any
fixed database schema, there are only a finite number of
different instances of that schema.

By using ` additional marker codewords to indicate the
positions of every value bit, we can then implement the spe-
cial blocking operation blockexcepti as a composition of
four block and blockfrom operations already seen above.
This operation blocks, in any word of value bits of length `,
all value bits except the ith one. For all other purposes the
marker codewords can be treated transparently, so we con-
sider blockexcepti to be a primitive operation rather than
an abbreviation like connect is.

Now crucially, DNAQL includes a for-loop mechanism that
allows an expression to be iterated ` times while letting a
counter variable i range from 1 to the dimension `. The for-
loop construct is crucial because it allows DNAQL programs
to run on inputs of unknown, but well-defined, dimension.

Using a for-loop, a DNAQL program for σA=B is now
readily written. First, we make an obvious modification
of the program for σθa , using blockexcept, to arrive at a
program for σA=ia, selecting all tuples t for which the ith
value bit of t(A) equals a. Then using that as a subroutine,
the following program computes complex (σA=B(r)) on in-
put x = complex (r), where r(A,B) is a relation instance and
where for simplicity we assume a binary alphabet Λ = {0, 1}:

for y := x iter i do

σB=i0(σA=i0(y)) ∪ σB=i1(σA=i1(y)).

The above for-loop should be read as follows: y is initialized
to x; then y is repeatedly replaced by the value of the body
expression, for i = 1, . . . , ` where ` is the dimension of the
input at hand.

We emphasize that our for-loops merely iterate a counter
until the dimension of the instance. Thus they should not
be confused with the much more powerful for-loop iteration
mechanisms that iterate over the cardinality of the instance,

as considered earlier in the theory of query languages [12,
21].

3.6 DNAQL
We have now introduced all the features of the language

DNAQL. To summarize, the expressions of the language
are built up as follows. The atomic expressions are variables
representing the contents of test tubes; constants for sin-
gle strands; constants for probes; and constants for length-
two stickers. The following operations can be applied to
build further expressions: union; difference; hybridize; lig-
ate; flush; split; block; blockfrom; blockexcept; and cleanup.
Finally the language has a let-construct to be able to store
intermediate results in a new variable, and the for-construct
described in the previous paragraph.

In this paper we omit the formal semantics of DNAQL
[17, 6].

4. COMPLEXES
We have seen in the previous section how operations on

DNA can perform data manipulation. During these manip-
ulations intermediate structures are created. These struc-
tures, which we have referred to as complexes, consist of
various strands and stickers, some connected up by base-
pair bonding. Various fragments may be blocked, and some
of the connected components of the complex may be im-
mobilized by probes. In our model we assume that each
connected component may be bound to at most one probe;
this assumption is motivated by the physical distance that
exists between two probes.

A good data model must be closed under its operations.
Hence, it is not sufficient to think of a database instance
as the complex representation of a relation instance as de-
fined in Section 2. Instead we formally define the notion of
complex and take this as our notion of database instance
in our model. Complexes are finite directed graphs (V,L)
where each node represents a position in a strand or sticker,
and L ⊆ V ×V represents the successor relations within the
strands and stickers. In addition, each node v is labeled by
a letter from Σ ∪ Σ̄, and there is also a partial matching on
the nodes that indicates base pairing.2 Finally, the complex
includes two subsets β and ι of V that hold the blocked and
the immobilized nodes, respectively.

For such a structure (V,L, λ, µ, β, ι) to be a valid complex,
however, additional restrictions must be satisfied:

1. (V,L, λ) must be a disjoint union of positive strands
and stickers. Here, a positive strand is a linear or
circular chain where all nodes are labeled with positive
letters, and a sticker is a single node or a chain of
length two where all nodes are labeled with negative
letters.

2. Negative value bits cannot occur in length-two stickers.

3. If {u, v} ∈ µ then λ(v) = λ(u) (as expected from base
pairing).

4. Nodes in β cannot occur in µ (since blocked nodes
represent pieces of double strand).

2A partial matching on V is a set µ of unordered pairs of
elements of V such that each element of V occurs in at most
one pair from µ.

5. The nodes in ι must be exactly the nodes of the single-
node stickers (thus, probes are formalized as length-
one stickers).

6. As already mentioned in the previous paragraph, each
connected component (where connections can be made
by µ as well as L) can contain at most one node in ι.

These restrictions are satisfied by all the DNAQL data ma-
nipulations described in the previous section. Hence, our
model of complexes provides a restricted, thus more pre-
dictable and tractable, setting for DNA computing, which
still allows sufficient computation to take place so as to have
at least the power of the relational algebra.

4.1 Weak types
The above-defined notion of complex serves as our notion

of “database instance” in the DNA computing world. But
then what is the corresponding notion of“database schema”?
Recall that atomic data values are represented by strings of
value bits. In a complex, such strings are visible as chains
of consecutive nodes on a strand, with all nodes labeled by
value bits. We consider nodes labeled by letters other than
value bits, i.e., nodes labeled by attributes or tags, to serve
more as markers rather than data carriers. Thus, such nodes
serve as punctuation marks, as data structuring nodes, or as
temporary markers during the computation. In other words,
the structure of the nodes not labeled by value bits serves
as the scaffolding of the complex.

The above observations suggest to consider as the“schema”
of a complex C, the complex S obtained from C by abstract-
ing away the nodes labeled by value bits, but keeping the
other nodes intact. Formally, we define a weak type just like
a complex, except that there is only one positive value bit
symbol ‘∗’. A single node labeled ∗ stands for a chain of con-
secutive nodes labeled by value bits. We refer to such chains
as data cores. The definition of when a complex C satisfies a
weak type S is then simply that every connected component
of C can be obtained from a connected component of S by
replacing each ∗-node by a data core.

For example, the complex representation compex (r) of any
relation instance r(A,B) satisfies the weak type consisting
of the single strand #2A#3 ∗#4#2B#3 ∗#4.

5. TYPECHECKING DNAQL
Some of the operations of DNAQL are not always well-

defined on all possible inputs. Indeed, the operations union,
ligate, flush, split, and cleanup can be performed on any
complex with a well-defined result. In contrast, the opera-
tions difference, hybridize, and the three blocking operations
have only a well-defined result on inputs satisfying certain
conditions, where the precise conditions depend on the op-
erator. These conditions are so as to make the operation
effectively implementable on real DNA using known tech-
niques.

The condition for the difference of two complexes to be
well defined is, roughly, that both complexes consist exclu-
sively of positive strands all of the same length. The con-
dition for the blocking operations to be well defined is that
the input complex is saturated in the sense that no further
hybridization is possible in the input complex, i.e., all base
pairings that are possible in the input complex are realized.

The condition for hybridization to behave well is that it
will not go into a chain reaction, what we have called nonter-

minating hybridization in Section 3.2. In our work [8, 7] we
have characterized termination of hybridization applied to a
complex C in terms of the absence of so-called alternating
cycles in C. Formally, in any complex C, consider the fol-
lowing two kinds of moves that one may make to jump from
one node to another. In what follows it must be understood
that it is only allowed to move between nodes that are not
blocked and not paired by µ; we call such nodes free. Now a
complementary move is a move from a free node to another
free node with a complementary label; a component move is
a move from a free node to another free node belonging to
the same connected component.

We have proved [8, 7]: A complex C has nonterminating
hybridization if and only if one can make a cycle in C by
an alternating sequence of complementary moves and block
moves, so that no node of an immobilized connected compo-
nent is involved.3

5.1 The weakness of weak types
That some operations are undefined on some inputs, as

seen above, should not surprise us too much, as the same is
true for conventional programming languages. For example,
in Java, the operation x.a is only well defined if x points to
an object that has an instance variable a. A similar situation
is present in database query languages such as SQL or the
relational algebra. For example, we can only take the union
r∪s of two relations if r and s have the same relation scheme.

The standard solution to guarantee well-definedness is
through type checking, and this is what we will do here
as well. A DNAQL expression is said to be well defined
on an input if, during the natural order of evaluation of
all operations, starting with the given inputs, every opera-
tion is well defined on the inputs it receives from the re-
sults of its preceding operations. For a simple example,
blocka(hybridize(x)) is well defined on all inputs, i.e., all
possible assignments of a complex C to input variable x,
because blocka requires its input to be saturated, and the
output of hybridize is trivially saturated.

In the relational algebra, if we know the relation schemes
of the input relations, we can typecheck a relational algebra
expression to see if it will be well defined on all input rela-
tions over the given schemes. For example, if x is a relation
variable with scheme {A,B,C}, then σA=B(πA,B(x)) is well
typed but σA=C(πA,B(x)) is not. We determine this by type
inference [32]: inferring the scheme {A,B} for the interme-
diate expression πA,B(x), then concluding that σA=B is well
defined on instances of that scheme but σA=C is not. We
would like to have a similar type inference mechanism for
DNAQL.

Recall from Section 4.1 that weak types serve as schemes
for complexes. They are a little bit too weak to guaran-
tee well-definedness, however, as a weak type only gives
the possible structures that may exist in a complex, with-
out being tight in this respect. Consider, for example, the
weak type S consisting of the single strand #3 ∗ #4. Sup-
pose x is a variable of type S, and consider the expression
e4 = hybridize(x∪immob(ā)) for some value bit a. When x
is assigned a concrete complex C and e4 is evaluated, some
strands in C may contain a data core containing a, and these
will bind to the probe immob(ā). In this way connected com-
ponents of weak type S′ are formed, where S′ is obtained by

3In the cited papers, complementary moves are called edge
moves and component moves are called block moves.

taking the disjoint union of S and a single-node complex rep-
resenting the probe immob(ā), and pairing in µ the ∗-labeled
node from S with the node from the probe. On the other
hand, strands in C that do not contain a remain free in the
result of e4. These strands still have weak type S. More-
over, in case that no strand in C contain a, the probe will
remain free as well. Hence, the best weak type we can infer
for the result of e0, given type S for x, is the weak type S4

formed by the disjoint union of the three weak types S, S′,
and immob(ā). We conclude that complexes of weak type S4

need not actually contain components of the three possible
types. One may compare type S4 with an untagged union
type [10].

We now show that this aspect of uncertainty of weak types
prevents typechecking of expressions that we want to al-
low. For a simple example, consider the constant expres-
sion e5 = hybridize(#2#4 ∪ #4#5). The strand #2#4

obviously has itself as its weak type, and similarly for the
sticker #4#5. Hence the weak type for the union is sim-
ply the union of these weak types. This is the input type
given to the type checker to check the application of hy-

bridize. Since we have agreed that components part of
weak types are not necessarily present in actual complexes
of that type, the type checker must take into account the
possibility that the sticker is actually not present, although
in this particular constant expression we know it is present.
The resulting weak type would thus still contain a free copy
of the strand #2#4. This is bad because the larger expres-
sion e6 = hybridize(e5 ∪ #4#2) will now be rejected by
the type checker, since a possible free strand (#4#2 in this
case) and its complementary sticker are diagnosed as leading
to nontermination hybridization. In fact, the evaluation of
expression e6 is well-defined.

5.2 Strong types
From the above it is clear that weak types have to be

extended with a way of indicating that some of the com-
ponents of the type are certain to occur in any complex of
that type. In our work we have called these the mandatory
components. Moreover, to allow satisfactory typechecking
of the blocking operations, we have additionally extended
weak types with a bit, called the hybridization bit, to indi-
cate that complexes of that type are certain to be saturated
(as that is the condition for the blocking operations to be
well defined). Finally, to represent the result of blocking on
the type level, we provide next to the symbol ∗, two further
symbols ∗ and ∗̂ to represent a data core that is entirely
blocked, or entirely blocked with the exception of one value
bit (as resulting from an application of the blockexcept op-
eration). It turns out that with these extensions (which we
call strong types), all the operations of DNAQL can be eval-
uated on the type level, leading to a type inference algorithm
for DNAQL.

Typechecking the cleanup operation.
To give some appreciation of what it means to evaluate

DNAQL on the type level, we briefly discuss the cleanup

operation. Recall that this operation first removes all base
pairing and all blocking, and in a second step keeps only
the longest strands. The second step is not entirely trivial
to do on the type level. Consider, for example, the type S
consisting of the two strand types S1 = A ∗A ∗A and S2 =
AAAAA ∗AAAAA (for A an attribute). In any complex of

type S, of dimension `, strands of type S1 have length 3+2`
whereas strands of type S2 have length 10 + `. Hence, when
` = 7, both types of strands are equally long; when ` < 7,
the strands of type S2 win; otherwise, the strands of type S1

win. We conclude that the result type of e7 = cleanup(x),
when the type of x is S, equals S itself, with none of the
strand types mandatory.

On the other hand, when we replace in the above discus-
sion type S2 by type S′

2 = AA ∗ AA, we see that strands of
type S1 will always be longest no matter what the dimension
is. So, given the input type S′′ which is like S but with S′

2

instead of S1, the result type of e7 is S1. Moreover, if in type
S′′ the component S1 would be marked as mandatory, the
type inference algorithm will propagate this to the output
type.

Properties of the type inference algorithm.
Our type inference algorithm [9, 6] has the following de-

sirable properties.

Soundness This is the expected property. We have proved
that if our type system judges an expression e(x1, . . . ,
xk) to well-typed for given input types τ1, . . . , τk for
the input variables x1, . . . , xk, and infers a result type
τ ′, then e will always have a well-defined evaluation
on any input complexes C1, . . . , Ck of types τ1, . . . ,
τk, and the result will be of type τ ′. Importantly,
this holds regardless of the dimension that the input
complexes have, as long as they all have the same di-
mension.

Maximality This is a converse to soundness, but restricted
to atomic expressions, i.e., expressions that consist of
a single operation applied to variables. For atomic
expressions we have proved that when the operator
is well defined on all complexes of given input types,
then the type system judges the expression well-typed
under these input types.

Since well-definedness of general DNAQL expressions
under given input types is undecidable, we cannot ex-
pect a full converse to soundness (for then the type-
checking algorithm would be an algorithm for checking
well-definedness). Well-definedness for DNAQL is un-
decidable because it is undecidable for the relational
algebra [32], and we have seen in Section 3 that ev-
ery relational algebra expression can be simulated by a
well-defined DNAQL expression (actually, a well-typed
DNAQL expression).

Tightness This is a property first considered by Papakon-
stantinou et al. in the context of type inference for
XML transformations [22, 23]. We can prove the fol-
lowing. Let e again be an atomic expression, and as-
sume that the type system infers an output type τ ′ for
e, given input types τ . Assume furthermore that e, on
inputs of type τ , always results in a complex of type
τ ′′. Then τ ′ will be a subtype of τ ′′.

6. EXPRESSIVE POWER OF
WELL-TYPED DNAQL

The design of DNAQL has been guided by the relational
algebra: we wanted a language in which the data manipula-
tions of the relational algebra can be expressed. And indeed,

on complexes representing relational instances, we can im-
plement every relational algebra operation by a well-typed
DNAQL program. At the same time, however, we have been
careful not to simply design a clone of the relational algebra.
Indeed, DNAQL programs can work on much more general
DNA complexes than just those that represent relational in-
stances.

It remains to understand what the expressive power is of
well-typed DNAQL programs in the general case. We can
show a rather satisfying converse simulation of DNAQL by
the relational algebra. Since this result still has to appear
in a forthcoming paper, we only provide a brief sketch.

For the simulation to work, we need to replace equality
selection σA=B by value bit selection σA=ia as introduced
in Section 3.5. As seen there, we can then express equal-
ity selection using value bit selection, if in addition we add
DNAQL’s for-loop construct also to the relational algebra,
which is what we do. We thus obtain a relational algebra
variant, which could be called the string relational algebra,
suitable for relational databases where atomic data values
are strings of value bits, of some uniform but arbitrary length
(the dimension).

The simulation of typed DNAQL by the string relational
algebra is based on a relational representation of complexes
of a known type. Given a weak type T that is connected, we
can form a relation scheme rel(T) that uses as “attributes”
the nodes of T labeled with ∗. Note that any complex C
of type T is a disjoint union of connected components D,
where each such D is of the form described by T . We can
represent the data stored in D by a tuple tD over rel(T) that
contains, for each ∗-labeled node of T , the data value stored
in the corresponding data core in D. Then the relation con-
sisting of all these tuples tD represents the complex C. For
a weak type S that has multiple connected components T ,
we use a relational database schema that has one relation
scheme rel(T) for each T and proceed similarly. This repre-
sentation has to be further refined for strong types; we omit
the details.

As a simple example, consider the operation hybridize(x)
where x is of type S consisting of two connected components:
T1 which is the strand ∗#4 and T2 which is the following
complex:

#2∗
#4#2

Here, the node from the upper strand labeled #2 is already
matched by µ with the node labeled #2 from the lower
sticker. Then the result type contains the following con-
nected component T :

∗#4#2∗
#4#2

It is now clear that for any complex C of type S, the relation
for T in the relational representation of hybridize(C) equals
the cartesian product r1 × r2, where ri is the relation for Ti
in the relational representation of C. We thus see that the
main workhorse of DNA computing, namely hybridization,
corresponds to the main workhorse of the relational algebra,
namely cartesian product. When hybridizing with probes,
the value bit selection operation is additionally used in the
simulation.

A final caveat is that we cannot in general simulate every
DNAQL expression by a single relational algebra expression

that works across all possible dimensions for the input data.
Since the result type of applications of cleanup can depend
on the dimension, we must be satisfied with a finite case
statement over the dimensions. A relational algebra expres-
sion is then given in each case, described by a simple linear
condition on the dimension. For example, we have seen in
Section 5.2 where the cases were ` < 7, ` = 7, and ` > 7.

7. CONCLUSION
In this paper we have (informally) presented a formally

defined data model and query language, in an attempt of
defining the analogues of the relational model and the rela-
tional algebra in the world of DNA computing. Our model
is a restriction, suitable for database manipulation, of what
is known as Adleman’s model of DNA computing. Mean-
while, various other models of DNA computing have come in
vogue, such as the tile assembly model [16], and the model of
chemical reaction networks, implemented in DNA by strand
displacement [30]. It would be very interesting to repeat our
effort for these other models.

Meanwhile, in further developing the model we have pre-
sented here, many challenges remain. An obvious one is its
implementation and experimental validation. In this respect
we should make clear that our descriptions of biotechnolog-
ical protocols or operations on DNA have been very high-
level, with the only purpose of giving the average reader
a rough idea on how such operations may be achieved. Al-
though we think it is plausible that DNAQL can in principle
be implemented, actually doing so is a major topic for fur-
ther research. We definitely anticipate technical obstacles
to full implementation of DNAQL programs on arbitrary
data, and our model will most likely have to be restricted or
adjusted in the face of such implementation challenges.

One of the challenges of DNA computing is controlling the
error rates. In this respect, it seems very interesting to us to
develop a rigorous theory of database query languages that
can make errors. We anticipate that similar techniques will
play a role as have been developed for probabilistic querying
[31].

Acknowledgment
Jan Van den Bussche would like to thank Anthony J. (Tony)
Bonner for getting him interested in DNA, a long, long time
ago. Tony suggested Jan to read The Cartoon Guide to
Genetics [19] which Jan still highly recommends to all in-
terested readers.

8. REFERENCES
[1] L.M. Adleman. Molecular computation of solutions to

combinatorial problems. Science, 226:1021–1024,
November 1994.

[2] M. Amos. Theoretical and Experimental DNA
Computation. Springer, 2005.

[3] M. Arita, M. Hagiya, and A. Suyama. Joining and
rotating data with molecules. In Proceedings 1997
IEEE International Conference on Evolutionary
Computation, pages 243–248.

[4] E.B. Baum. Building an associative memory vastly
larger than the brain. Science, 268:583–585, 1995.

[5] E.B. Baum. DNA sequences useful for computation. In
L.F. Landweber and E.B. Baum, editors, DNA Based

Computers II: DIMACS Workshop, held June 10–12,
1996, pages 235–242. American Mathematical Society,
1998.

[6] R. Brijder, J.J.M. Gillis, and J. Van den Bussche.
DNAQL: A query language for DNA sticker
complexes. Available from http://alpha.uhasselt.

be/jan.vandenbussche/pubs.html.

[7] R. Brijder, J.J.M. Gillis, and J. Van den Bussche.
Graph-theoretic formalization of hybridization in
DNA sticker complexes. Natural Computing. In press.

[8] R. Brijder, J.J.M. Gillis, and J. Van den Bussche.
Graph-theoretic formalization of hybridization in
DNA sticker complexes. In L. Cardelli and W. Shih,
editors, DNA Computing and Molecular Programming,
17th International Conference, DNA17, volume 6937
of Lecture Notes in Computer Science, pages 49–63.
Springer, 2011.

[9] R. Brijder, J.J.M. Gillis, and J. Van den Bussche. A
type system for DNAQL. In D. Stefanovic and
A. Turberfield, editors, DNA Computing and
Molecular Programming, volume 7433 of Lecture Notes
in Computer Science, pages 12–24, 2012.

[10] P. Buneman and B. Pierce. Union types for
semistructured data. In R.C.H. Connor and A.O.
Mendelzon, editors, Research Issues in Structured and
Semistructured Database Programming, volume 1949
of Lecture Notes in Computer Science, pages 184–207.
Springer, 2000.

[11] Publications by the DNA and Natural Algorithms
Group, California Institute of Technology.
http://www.dna.caltech.edu/DNAresearch_

publications.html.

[12] A.K. Chandra. Programming primitives for database
languages. In Conference Record, 8th ACM
Symposium on Principles of Programming Languages,
pages 50–62, 1981.

[13] J. Chen, R.J. Deaton, and Y.-Z. Wang. A DNA-based
memory with in vitro learning and associative recall.
Natural Computing, 4(2):83–101, 2005.

[14] G.M. Church, Y. Gao, and S. Kosuri. Next-generation
digital information storage in DNA. Science,
337(6102):1628, 2012.

[15] A.E. Condon, R.M. Corn, and A. Marathe. On
combinatorial DNA word design. Journal of
Computational Biology, 8(3):201–220, 2001.

[16] D. Doty. Theory of algorithmic self-assembly.
Communications of the ACM, 55(12):78–88, 2012.

[17] J.J.M. Gillis and J. Van den Bussche. A formal model
of databases in DNA. In K. Horimoto, M. Nakatsui,
and N. Popov, editors, Algebraic and Numeric
Biology, 4th International Conference, ANB 2010,
Lecture Notes in Computer Science, pages 18–37.
Springer, 2012.

[18] N. Goldman et al. Towards practical, high-capacity,
low-maintenance information storage in synthesized
DNA. Nature, 2013. Published online, 23 January.

[19] L. Gonick. The Cartoon Guide to Genetics.
HarperCollins, 1991.

[20] L. Kari and G. Rozenberg. The many facets of natural
computing. Communications of the ACM,
51(10):72–83, 2008.

http://alpha.uhasselt.be/jan.vandenbussche/pubs.html
http://alpha.uhasselt.be/jan.vandenbussche/pubs.html
http://www.dna.caltech.edu/DNAresearch_publications.html
http://www.dna.caltech.edu/DNAresearch_publications.html

[21] F. Neven, M. Otto, J. Tyszkiewicz, and J. Van den
Bussche. Adding for-loops to first-order logic.
Information and Computation, 168(2):156–186, 2001.

[22] Y. Papakonstantinou and P. Velikhov. Enhancing
semistructured data mediators with document type
definitions. In Proceedings 15th International
Conference on Data Engineering, pages 136–145.
IEEE Computer Society, 1999.

[23] Y. Papakonstantinou and V. Vianu. DTD inference for
views of XML data. In Proceedings 19th ACM
Symposium on Principles of Database Systems, pages
35–46. ACM Press, 2000.

[24] G. Paun, G. Rozenberg, and A. Salomaa. DNA
Computing. Springer, 1998.

[25] J.H. Reif et al. Experimental construction of very
large scale DNA databases with associative search
capability. In N. Jonoska and N.C. Seeman, editors,
Proceedings 7th International Meeting on DNA
Computing, volume 2340 of Lecture Notes in
Computer Science, pages 231–247. Springer, 2002.

[26] G. Rozenberg, T. Bäck, and J.N. Kok, editors.
Handbook of Natural Computing. Springer, 2012.

[27] J. Sager and D. Stefanovic. Designing nucleotide
sequences for computation: A survey of constraints. In
A. Carbone and N.A. Pierce, editors, Proceedings 11th
International Meeting on DNA Computing, volume
3892 of Lecture Notes in Computer Science, pages
275–289. Springer, 2006.

[28] D. Shasha and C. Lazere. Natural Computing: DNA,
Quantum Bits, and the Future of Smart Machines.
Norton, 2010.

[29] M.R. Shortreed et al. A thermodynamic approach to
designing structure-free combinatorial DNA word sets.
Nucleic Acids Research, 33(15):4965–4977, 2005.

[30] D. Soloveichik, G. Seelig, and E. Winfree. DNA as a
universal substrate for chemical kinetics. PNAS, 2010.
Published online, 4 March.

[31] D. Suciu, D. Olteanu, Ch. Ré, and Ch. Koch.
Probabilistic databases. Synthesis Lectures on Data
Management, 3(2):1–180, 2011.

[32] J. Van den Bussche, D. Van Gucht, and
S. Vansummeren. A crash course in database queries.
In Proceedings 26th ACM Symposium on Principles of
Database Systems, pages 143–154. ACM Press, 2007.

	Introduction
	DNA, hybridization, and representation of relational data
	Data manipulation by DNA Computing
	Probing, flushing, and cleaning
	Ligation and nontermination
	Blocking and splitting
	Difference
	Dimension and for-loops
	DNAQL

	Complexes
	Weak types

	Typechecking DNAQL
	The weakness of weak types
	Strong types

	Expressive power of well-typed DNAQL
	Conclusion
	References

