
A Crash Course on Database Queries

Jan Van den Bussche
Hasselt University

transnational University of Limburg

Dirk Van Gucht
Indiana University

Stijn Vansummeren
∗

Hasselt University
transnational University of Limburg

ABSTRACT
Complex database queries, like programs in general, can
‘crash’, i.e., can raise runtime errors. We want to avoid
crashes without losing expressive power, or we want to cor-
rectly predict the absence of crashes. We show how concepts
and techniques from programming language theory, notably
type systems and reflection, can be adapted to this end. Of
course, the specific nature of database queries (as opposed
to general programs), also requires some new methods, and
raises new questions.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query Lan-
guages; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs; F.4.1
[Mathematical Logical and Formal Languages]: Math-
ematical Logic—Computability Theory

General Terms
Verification, Theory, Languages

Keywords
Runtime errors, well-definedness, type systems, typability,
type inference, reflection, nested relational calculus, rela-
tional algebra, XQuery

1. INTRODUCTION
Research in programming languages has produced sophis-

ticated tools for the analysis and definition of computer pro-
grams. The most prominent such tool is the static type sys-
tem whose purpose is to ensure that well-typed programs
do not crash [12, 38]. Recall that a program in general has
three possible outcomes: it may terminate with a valid re-
sult; it may terminate with a runtime error (in which case

∗Stijn Vansummeren is a Postdoctoral Fellow of the Re-
search Foundation–Flanders (FWO).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
P ODS’07, J une 11–13, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-685-1/07/0006 ...$5.00.

the program is said to ’crash’); or it may not terminate at all.
Runtime errors occur for example when executing instruc-
tions like 5 + ’John’ where the primitive addition operator
+ is applied to inappropriate values. Although decidable
static type systems can prove the absence of crashes, they
cannot prove their presence. For example, a program like

if <complex test> then <crash>

will be rejected as ill-typed even if <complex test> never
terminates and the <crash> expression is never executed, as
termination of programs is undecidable and hence cannot be
statically checked.

As a result of this conservatism, the earlier static type
systems fell short on flexibility. To paraphrase Milner [34]:

A widely employed style of programming, par-
ticularly in structure-processing languages which
impose no discipline of types (LISP is a perfect
example), entails defining procedures that work
well on objects of a wide variety (e.g., on lists of
atoms, integers, or lists). Unfortunately, one of-
ten pays a price for this flexibility in the time
taken to find rather inscrutable bugs — any-
one who mistakenly applies CDR to an atom in
LISP, and finds himself absurdly adding a prop-
erty list to an integer, will know the symptoms.
On the other hand, a type discipline such as that
of ALGOL 68 which precludes the bugs men-
tioned above, also precludes the programming
style which we are talking about.

The flexibility issue was solved by recognizing that primitive
language operators are naturally polymorphic and can safely
be applied to arguments of a wide range of types. Such oper-
ators include assignment, function application, pairing and
tupling, and list-processing operators. Independently, Hind-
ley [22] and Milner [15, 34] extended the static type system
to deal with polymorphism; they described a type inference
(sometimes also called type reconstruction) algorithm that
assigns each program fragment to its principal type scheme.
This is a concise description of all possible type assignments
under which the program is well-typed. For example, the
list concatenation function

fun concat(l1, l2) = if null(l1) then nil else

cons(hd(l1), concat(tl(l1), l2))

is given the principal type scheme [α] × [α] → [α], which
states that concat — being built from polymorphic primi-
tives — is itself polymorphic: it can be applied to any pair of

143

lists of objects of the same type and returns a list of objects
of that type. This yields the desired flexibility, as programs
like

(concat([1,2],[3,4]), concat([’John’],[’Doe’]),

can now be considered well-typed. In contrast, this program
is ill-typed in earlier monomorphic type systems where con-
cat can only be given the type [int]× [int] → [int] or [string]×
[string] → [string], in which case either concat([’John’],[’Doe’])
or concat([1,2],[3,4]) is ill-typed.

While the goal of type systems is to guarantee soundness
of runs without giving up flexibility in the definition of pro-
grams, there is another tool from programming languages,
reflection, that is squarely directed towards enhancing this
flexibility even more. Briefly, reflection is the ability, within
the run of a program, to inspect the program, and also gen-
erate and execute other programs. So, programs become a
kind of data, and one also speaks of meta-programming in
this context. The connection between type checking and re-
flection is not as far-fetched as it may seem, certainly not
in the context of semi-structured data models where the
distinction between type information and ordinary data is
blurred. The additional step from type information to other
kinds of program expressions as data is then not so large.

Indeed, in light of the view that database query languages
are “just” domain-specific programming languages, the tools
of type systems and reflection can of course also be applied in
the database context. There are some important differences
between general-purpose programming languages and query
languages, however, that call for revisiting these tools and
studying how they specialize in the database context.

For example, query languages typically are less than tur-
ing complete and may therefore exhibit static type systems
that are both sound and complete in the sense that they
cannot only prove the absence of crashes, but also their
presence. Furthermore, one of the prime data structures
in databases is the record. Although there has been consid-
erable research in the programming languages community
to extend type inference to deal with (polymorphic) record
operators, these studies have mainly focused on records in
the presence of higher-order function types and subtyping,
two features typically not present in query languages. The
techniques for and complexity of type inference may there-
fore differ significantly. Finally, although the unification of
programs and data has been put forward as an important
database research topic [2], little attention has been given
to reflection and meta-programming as a means to this uni-
fication.

The goal of this paper is to present a subjective overview
of some recent work on types and reflection in the context
of query languages. In addition, we highlight some research
issues and directions for future work.

2. COMPLETE STATIC TYPE SYSTEMS
Let us first introduce the Nested Relational Calculus NRC,

a generalization and elegant abstraction of the familiar select-
from-where SQL, OQL, and C� queries [7, 9]. The NRC op-
erates on complex objects o, which are nested combinations
of atomic constants c; records; and sets:

o ::= c | (A : o, . . . , B : o′) | {o, . . . , o′}.
As usual, the attributes in a record (A : o, . . . , B : o′) are all
assumed to be distinct, and the order of attributes does not

o → o

e → o . . . e′ → o′

(A : e, . . . , B : e′) → (A : o, . . . , B : o′)

e → (A : o, . . . , B : o′)

e.A → o {} → {}
e → o

{e} → {o}

e1 → {o1, . . . , om} e2 → {o′1, . . . , o′n}
e1 ∪ e2 → {o1, . . . , om, o′1, . . . , o

′
n}

e → o

{e | } → {o}
e1 → {}

{e | x1 ∈ e1, Δ} → {}

e1 → {o, . . . , o′}
{e[x1/o] | Δ[x1/o]} ∪ · · · ∪ {e[x1/o′] | Δ[x1/o′]} → o′′

{e | x1 ∈ e1, Δ} → o′′

Figure 1: The operational semantics of NRC.

matter. For example, (A : c, B : c′) = (B : c′, A : c). The
NRC expressions e themselves are given by the syntax

e ::= x | o | (A : e, . . . , B : e′) | e.A

| {} | {e} | e1 ∪ e2 | {e | x1 ∈ e1, . . . , xn ∈ en}
(where parentheses may be used to avoid ambiguity). Here,
x ranges over variables that can be bound to input objects;
o is constant object formation; (A : e, . . . , B : e′) is record
formation; e.A is field inspection; {} and {e} are empty and
singleton set construction, respectively; e1 ∪ e2 is set union;
and {e | x1 ∈ e1, . . . , xn ∈ en} is set comprehension. For
example, {(A : x, B : y) | x ∈ R, y ∈ S} returns the cartesian
product of the sets R and S, while {y | x ∈ T, y ∈ x} flattens
the set of sets T .

We use the notation Δ as a shorthand for x1 ∈ e1, . . . , xn ∈
en. It should be emphasized that the xi ∈ ei part in the
{e | Δ, xi ∈ ei, Δ

′} construct is not a membership test. It
is an abstraction which introduces and binds the variable
xi, whose scope is the expression e and Δ′. In light of this
view, the free variables FV (e) of an expression e are hence
inductively defined as follows: FV (x) = {x}, FV (o) = {},
FV ({e | x1 ∈ e1, Δ} = FV (e1) ∪ (FV ({e | Δ}) − {x}), and
FV (e) is the union of the free variables of e’s immediate
subexpressions otherwise. We write e(x, . . . , y) to indicate
that e is an expression with FV (e) = {x, . . . , y}). An ex-
pression without free variables is closed.

Some expressions, like (C : o).A and 5∪{o}, clearly apply
primitive operators to inappropriate objects and will there-
fore crash during evaluation. This intuition is formalized
as follows. Let e[x/o, . . . , y/o′] denote the expression ob-
tained from e by replacing all free occurrences of x, . . . , y by
o, . . . , o′ respectively. Similarly, let Δ[x/o, . . . , y/o′], with
Δ = x1 ∈ e1, . . . , xn ∈ en, denote x1 ∈ e1[x/o, . . . , y/o′], . . . ,
xn ∈ en[x/o, . . . , y/o′]. Evaluation of e(x, . . . , y) on o, . . . , o′

can then be seen as running the operational semantics of Fig-
ure 1 on e[x/o, . . . , y/o′]. There, we use the notation e → o
to indicate that closed expression e evaluates to object o.
Evaluation crashes when there is no o such that e → o.

Example 1. Evaluation of the expression {(A : y.C, B : z) |
y ∈ x1, z ∈ x2} with x1 bound to o1 = {(C : 1)} and x2

144

bound to o2 = {3} is successful:

{(A : y.C, B : z) | y ∈ {(C : 1)}, z ∈ {3}} → {(A : 1, B : 3)}.
Evaluation of this expression with x1 bound to o′1 = (C : 1)
instead of o1 crashes, however, as no inference rule applies
to {(A : y.C, B : z) | y ∈ (C : 1), z ∈ {3}}.

Note that crashes only occur when (1) we apply field in-
spection to a record without the desired field or to a non-
record, and (2) when we apply set union and comprehension
to non-sets.

We are interested in the crashing behavior of expressions
when the inputs are taken from certain prescribed classes
of objects. To this end, let the NRC types be given by the
syntax

s, t ::= atom | (A : s, . . . , B : t) | {s},
where attribute names occurring in a record type (A : s, . . . ,
B : t) are all assumed to be distinct. The semantics of a type
is just a set of objects: atom is the set of all atomic data
constants (which in practice will include the integers, the
strings, and so on); (A : s, . . . , B : t) is the set of all records
(A : o, . . . , B : o′) with o, . . . , o′ of type s, . . . , t respectively;
and {s} is the set of all finite sets of objects of type s. We
write o : s to indicate that o is an object of type s.

2.1 Well-definedness
The question whether a sound and complete static type

system exists for the NRC is now equivalent to the question
whether the following problem is decidable.

Well-Definedness

Input: Expression e(x, . . . , y) and types s, . . . , t for
the free variables.

Problem: Decide whether e is well-defined under
s, . . . , t, i.e., whether e[x/o, . . . , y/o′] eval-
uates to an object for all o : s, . . . , o′ : t.

It turns out that well-definedness is not only decidable for
the NRC itself but also for NRC(eq), which is the extension
of NRC with atomic comparison expressions e1 eq e2 and
the following evaluation rules, where c1 and c2 stand for
distinct atoms:

e1 → c1 e2 → c1

e1 eq e2 → {()}
e1 → c1 e2 → c2

e1 eq e2 → {}
Note the classical relational representation of the boolean
values: true as the singleton {()} containing the empty
record, and false as the empty set. This allows queries like
‘return all records in R whose A-field is 5’ to be expressed
as {x | x ∈ R, y ∈ (x.A eq 5)}.

It should be emphasized that only atomic data values can
be compared, as o1 eq o2 crashes when o1 or o2 is not an
atom. Intuitively, NRC(eq) is the complex object equiva-
lent of the conjunctive queries [1]. In particular, NRC(eq) is
monotone in the following sense. Define the containment re-
lation � on objects to be the smallest relation such that c �
c for every atom c; (A : o1, . . . , B : on) � (A : o′1, . . . , B : o′n)
if oi � o′i; and {o1, . . . , on} � {o′1, . . . , o′m} if every oi has
some o′j such that oi � o′j .

Proposition 2. NRC(eq) is monotone with regard to �.
That is, for all NRC(eq) expressions e(x1, . . . , xn) and all

objects o1 � o′1, . . . , on � o′n, if e[x1/o1, . . . , xn/on] → o and
e[x1/o′1, . . . , xn/o′n] → o′, then o � o′. Also, if e[x1/o1, . . . ,
xn/on] crashes, then so does e[x1/o′1, . . . , xn/o′n].

Proposition 2 is crucial in showing that NRC(eq) has the
following “small-model property for undefinedness”.1

Theorem 3 ([55]). Define the width of an object o to be
the maximum cardinality of a set occurring in o. Given
e(x, . . . , y) in NRC(eq) and types s . . . , t for the free vari-
ables of e it is possible to compute l ∈ N such that if e is not
well-defined under s, . . . , t, there exist o : s, . . . o′ : t of width
at most l on which e[x/o, . . . , y/o′] crashes.

Decidability of the well-definedness problem for NRC(eq)
immediately follows. Indeed, up to isomorphism (and ex-
pressions cannot distinguish isomorphic inputs), there are
only a finite number of objects o : s, . . . , o′ : t of width at
most l. It suffices to test them all to see if there is a counter-
example to well-definedness.

Theorem 4 ([55]). Well-definedness for NRC(eq) is de-
cidable.

Clearly, the method of enumerating all possible counter-
examples is computationally quite expensive. To appreciate
the inherent complexity of the problem, we note that the
classical satisfiability problem, defined as

Satisfiability

Input: Expression e(x, . . . , y) and types s, . . . , t
such that e[x/o, . . . , y/o′] evaluates to a set
for all o : s, . . . , o′ : t.

Problem: Decide whether there exist o : s, . . . , o′ : t
such that e[x/o, . . . , y/o′] evaluates to a
non-empty set.

reduces to the complement of well-definedness, which we call
ill-definedness. Indeed, if we assume e[x/o, . . . , y/o′] to eval-
uate to a set for all inputs o : s, . . . , o′ : t, then e is satisfiable
iff the expression {{}.A | x ∈ e} is ill-defined under s, . . . , t.
In particular, when e is closed, deciding ill-definedness of
{{}.A | x ∈ e} is as hard as checking whether e returns a
non-empty set. By the results of Koch on the query com-
plexity of closed NRC(eq) expressions [26] it readily follows
that

Theorem 5. Well-definedness for NRC(eq) is hard for Co-

Nexptime.

Whether this lower bound is tight remains unknown. The
decidability result of Theorem 4 is actually quite sharp. For
example, extending the language with general comparison
tests e1 = e2 where

e1 → o1 e2 → o1

e1 = e2 → {()}
e1 → o1 e2 → o2

e1 = e2 → {}
turns the problem undecidable. The crucial observation here
is that, since NRC(=) is an extension of the relational alge-
bra [9] for which satisfiability is undecidable [1], satisfiability
for NRC(=) is also undecidable. Hence, by the reduction of
satisfiability to ill-definedness it follows that
1NRC(eq) also turns out to have a “small model property
for definedness” in correspondence with the small model
property of the positive-existential fragment of first order
logic [55].

145

Theorem 6 ([55]). Well-definedness for NRC(=) is un-
decidable.

Another interesting example in point is NRC(eq, extract),
the extension of NRC(eq) with the singleton extraction op-
erator extract e where extract e → o iff e → {o}. This op-
erator allows us to model the behavior of SQL queries with
conditions involving scalar subqueries. Indeed, recall that in
SQL the where-clause condition 5 = select distinct A from R
crashes if the subquery select distinct A from R does not re-
turn a singleton. This behavior is readily modeled by the
expression 5 eq (extract {x.A | x ∈ R}). We also note that
an operator like extract is explicitly present in OQL [13].

Theorem 7 ([55]). Well-definedness for NRC(eq, extract)
is undecidable.

The crucial observation here is that, assuming that e1 and
e2 are already well-defined, the expression extract ({e1} ∪
{e2}) is well-defined under s, . . . , t if, and only if, e1 and e2

are equivalent. Theorem 7 then follows since, even though
NRC(eq) only expresses monotone queries by Proposition 2,
equivalence of well-defined NRC(eq) expressions is undecid-
able [55].

We should mention that XQuery [6, 16], the standard
query language for XML data, has several operators that,
like extract, crash on non-singleton inputs. Interestingly
enough, well-definedness for fragments of XQuery that in-
clude such operators is not necessarily undecidable. The cru-
cial difference with NRC(eq, extract) is that XQuery works
on trees and lists instead of sets. Equivalence then no longer
reduces to well-definedness of extract ({e1}∪{e2}), as the list
(e1, e2) is never a singleton, whether e1 and e2 are equivalent
or not.

Let us therefore consider XQ(Ω), the non-recursive for-
let-where-return data processing fragment of XQuery with
primitive operators in Ω. Its expressions α are given by the
syntax

α ::= x | c | () | if α then αt else αf | let x := α return α′

| for x in α return α′ | f(α1, . . . , αk)

XQuery expressions manipulate and return values, which are
finite lists of atomic constants and nodes [6, 17]. Nodes are
grouped into a background store (a lists of trees) which may
be updated during evaluation. The semantics of XQ(Ω) is
then that x ranges over variables that may be bound to input
values; c is atomic constant formation; and () is empty list
construction. The conditional if α then αt else αf evaluates
αt when α evaluates to the singleton boolean [true] and
evaluates αf when α evaluates to [false]. Note in particular
that the conditional crashes when α does not evaluate to
[true] or [false]. The let expression let x := α return α′

evaluates α′ with x bound to the result of evaluating α.
The for-loop for x in α return α′ evaluates α′ for each item
x in the result of α and concatenates the resulting values.
Finally, f(α1, . . . , αk) is primitive operator application (with
f ∈ Ω and k the arity of f). Examples of such operators
include an equality test, the various XPath axes, creating
a new tree, and so on. It is important to emphasize that
primitive operators in XQuery are partial functions. For
example, element creation crashes when its first argument
is not a singleton list [6].

Although one can study well-definedness of XQ(Ω) ex-
pressions for each instantiation of Ω separately, there is a

general theorem that ensures decidability of the problem
when the input types are all given by bounded depth reg-
ular expression types. Regular expression types are essen-
tially regular tree languages. They naturally occur in XML
Schema [50]; are used to describe valid inputs in XQuery;
and form the basis of general-purpose programming lan-
guages manipulating tree-structured data such as XDuce [23,
24] and CDuce [18]. The bounded-depth restriction is moti-
vated by the observation that most real-world tree-structured
data has nesting depth at most five or six [28], and that
unbounded-depth nesting is hence often not needed.

Theorem 8 ([57, 58]). If only bounded depth regular ex-
pression types are considered, and if Ω contains only oper-
ators that are (1) monotone; (2) generic; (3) local; and (4)
locally-undefined, then well-definedness for XQ(Ω) is decid-
able.

Intuitively, monotonicity ensures that satisfiability (which
continues to reduces to ill-definedness) is decidable; generic-
ity ensures that we do not run into trouble by interpreting
atomic constants; and locality and local-undefinedness en-
sure that if an expression crashes on some input, it is also
crashes on an input whose size can be statically computed
from the expression and the input types. All of them taken
together ensure that XQ(Ω) has a small model property for
undefinedness similar to Theorem 3.

Actually, each of monotonicity, genericity, locality, and
local-undefinedness are necessary in the sense that omitting
any one of them allows for a set of operators that turns
well-definedness undecidable [57, 58].

Decidability of well-definedness for a large and practical
fragment of XQuery immediately follows from Theorem 8
as, in the absence of automatic coercions, the various XPath
axes; node constructors; value and node comparisons; and
node label and content inspections are monotone, generic,
local, and locally-undefined [57, 58]. Since satisfiability con-
tinues to reduce to ill-definedness of closed expressions, the
results of Koch [26] imply that well-definedness for this frag-
ment is Co-Nexptime hard. As for NRC(eq), it is unknown
whether this lower bound is tight.

Another open question is whether the bounded depth re-
striction on the regular expression types can be relaxed.

2.2 Semantic type-checking
The question whether sound and complete static type sys-

tems exist for database query languages can also be viewed
from a different angle. A useful side-effect of type systems
is that they can also be used to verify that all outputs of a
program belong to a certain output type. This is especially
useful in semi-structured databases, where data produced
by a query is often expected to adhere to a prescribed type.
Again, type systems for general purpose programming lan-
guages can prove that all outputs are of the desired type,
but cannot prove that some output is not. Viewed from this
angle, the question whether a sound and complete static
type system exits corresponds to decidability of the follow-
ing problem.

Semantic Type-Checking

Input: Expression e(x, . . . , y), well-defined under
s, . . . , t and an additional type r.

Problem: Decide whether e[x/o, . . . , y/o′] evaluates
to an object in r, for all o : s, . . . , o′ : t.

146

T � x : T(x)

o : s

T � o : s

T � e : (A : s, . . . , B : t)

T � e.A : s

T � e : s . . . T � e′ : t

T � (A : e, . . . , B : e′) : (A : s, . . . , B : t)

T � {} : {s}
T � e : s

T � {e} : {s}
T � e1 : {s} T � e2 : {s}

T � e1 ∪ e2 : {s}

x1 : s1, . . . , xi : si, T � ei+1 : {si+1} for 0 ≤ i < n
x1 : s1, . . . , xn : sn, T � e : s

T � {e | x1 ∈ e1, . . . , xn ∈ en} : {s}

T � e1 : s T � e2 : s

T � e1 = e2 : {()}

Figure 2: Static type system of NRC(=).

In the XML-related setting where expressions can only in-
spect and manipulate a fixed, finite alphabet of atomic con-
stants (serving as tree labels), semantic type-checking can
be realized by a reduction to the satisfiability problem of
monadic second-order logic over trees, which is known to
be decidable [49]. Of course, the complexity of the problem
varies widely depending on both the expressiveness of the
language considered and the class of input and output types
allowed [29, 30, 31, 32, 35, 45, 62]. In contrast, when an infi-
nite set of atomic constants is allowed, the problem quickly
becomes undecidable [3, 4]. In the presence of bounded-
depth regular expression types, this is even true for mono-
tone languages. In contrast, for NRC(eq) we have:

Theorem 9 ([55]). Semantic type-checking for NRC(eq)
is decidable.

3. INCOMPLETE STATIC TYPE SYSTEMS
From Section 2 we may conclude that we can check crashes

in a sound and complete way for the (restricted yet useful)
class of monotone queries. The Co-Nexptime hardness re-
sults make it unlikely, however, that these checks can be
made practical. Furthermore, for non-monotone queries we
must always revert to a traditional, incomplete (but effi-
cient) type system.

These observations call for a closer inspection of the tra-
ditional type systems used in query languages. A particular
example in point is the type system for NRC(=), given in
Figure 2. There, T stands for a type assignment (a mapping
from variables to types) and the notation x : s, T stands for
the type assignment that equals T on all variables except
x, which it maps to s. As usual, the notation T � e : s
indicating that e has type s under T should be read as “as-
suming that the free variables x of e are bound to objects
of type T (x), e outputs objects of type s”. Observe that
this relation only depends on the free variables of an expres-
sion: if T and T ′ agree on FV (e) and T � e : s, then also
T ′ � e : s. We may therefore write x : r, . . . , y : s � e : t as a
shorthand of the more verbose x : r, . . . , y : s, T � e : t when
FV (e) = {x, . . . , y}.

We adopt the convention that the order of attributes in

a record type is irrelevant and that hence (A : s, B : t) =
(B : t, A : s). As such, the typing rule for field inspection
states that e.A has type s under T whenever e has a record
type whose A attribute is of type s, not only when A happens
to be the first attribute mentioned in that record type.

The obvious property one expects from a type system is
soundness:

Theorem 10. The static type system of Figure 2 is sound.
That is, if FV (e) = {x, . . . , y} and x : r, . . . , y : s � e : t then
for all o : r, . . . , o′ : s there exists o′′ : t such that e[x/o, . . . ,
y/o′] → o′′.

Note that soundness implies well-definedness. The converse
implication does not hold however, as the static type sys-
tem is not complete. For example, {{}.A | x ∈ {}} is well-
defined, but is not well-typed (i.e., there is no s such that
� e : s).

3.1 Expressive completeness
We should emphasize that devising a type system that

only needs to be sound is trivial. It suffices to let every
expression be ill-typed no matter the type assignment, as
soundness vacuously holds in the absence of well-typed ex-
pressions.

Of course, such a type system is useless as it precludes
the definition of all queries that can be expressed in a well-
defined (but untyped) manner. Although the NRC(=) type
system from Figure 2 is far from trivial, the question of
its expressive power with regard to the class of well-defined
queries remains. Observe, for example, that well-defined
expressions may manipulate heterogeneous sets (i.e., sets
of objects of different types), while well-typed expressions
cannot.

Example 11. The expression e = {z.A | z ∈ (x ∪ y)} is
well-defined under x : {(A : s,B : s)}, y : {(A : r,C : t)}. It is
not well-typed under this type assignment, however, as the
type rule for x∪y requires x and y to have the same set type.
Nevertheless, the same query is expressed by e′ = {z.A | z ∈
x} ∪ {z.A | z ∈ y}, which is well-typed.

Whether this example can be generalized to all well-defined
expressions is still unknown. We strongly conjecture that it
can, however.

Conjecture 12. The static type system from Figure 2 is
expressively complete. That is, every NRC(=) expression
e(x, . . . , y) that is well-defined under r, . . . , s and only pro-
duces outputs in a type t has an equivalent expression e′(x,
. . . , y) such that x : r, . . . , y : s � e′ : t.

Most type systems for turing complete programming lan-
guages are easily shown expressively complete: it suffices
to show that one can simulate all turing machine opera-
tions (including encoding and decoding of the programming
language objects on turing machine tapes) in a well-typed
manner. Proving Conjecture 12, in contrast, is more difficult
exactly because NRC(=) is not turing complete.

Interestingly enough, there are also type systems for tur-
ing complete programming languages that are not expres-
sively complete. For example, the untyped lambda calcu-
lus can define all computable functions, while in the simply
typed lambda calculus only a restricted class of functions,
the so-called extended polynomials, are definable [5, 42].

147

T � e : (A : r, B : s, . . . , C : t)

T � dropA e : (B : s, . . . , C : t)

T � e1 : {φ1} T � e2 : {φ2}
φ1 and φ2 have disjoint sets of attributes

T � e1 × e2 : {φ1 + φ2}

T � e1 : {φ1 + ψ} T � e2 : {φ2 + ψ}
φ1 and φ2 have disjoint sets of attributes

T � e1 � e2 : {φ1 + φ2 + ψ}

Figure 3: Additional type rules for NRC(=, drop).

3.2 Polymorphism
The basic operators of the statically typed NRC(=) are

inherently polymorphic: we can inspect the A attribute of
any record, as long as it has such an A attribute; we can
take the union of any two sets of the same type; and we
can iterate over any set, no matter the type of its elements.
Hence expressions, being built from polymorphic operators,
are themselves polymorphic. In particular, the same expres-
sion can be used to operate on objects of a wide variety of
types. For example, the expression e = {z.A | z ∈ (x ∪ y)}
is well-typed under all type assignments mapping x and y
to {s} with s a record type containing attribute A.

Polymorphism is tied to the familiar database principle
of “logical data independence”. By this principle, a query
formulated on the logical level must not only be insensitive
to changes on the physical level, but also to changes to the
database schema (i.e., the type), as long as these changes
are to parts of the schema on which the query does not
depend. This is apparent for e above, as it is still well-typed
if we drop from s some attribute B different from A. In
other words, polymorphism gives us the flexibility to query
different data sources with distinct schemas using the same
query, hence enabling code reuse.

Of course, the polymorphism provided by NRC(=) has its
limits. For example, the query that drops attribute A from
record x is readily expressed by (B : x.B) if we fix the type
of x to be (A : r, B : s), but there intuitively does not seem to
be a single expression defining the query that is well-typed
whenever x has attribute A. Indeed, the above expression
becomes ill-typed for x of type A : r and is incorrect for x of
type (A : r, B : s, C : t).

To make this intuition rigorous, let us call a pair (T, s)
such that T � e : s a typing of e. Two expressions e1(x, . . . , y)
and e2(x, . . . , y) are polymorphically equivalent if they have
the same set of typings and, for each such typing (T, s), e1

and e2 evaluate to the same object on all inputs o : T (x),
. . . , o′ : T (y). Also, let NRC(=, drop) be the extension of
NRC(=) with expressions of the form dropA e capable of
dropping attribute A:

e → (A : o, B : o′, . . . , C : o′′)

dropA e → (B : o′, . . . , C : o′′)

The corresponding type rule is given in Figure 3.

Theorem 13. No expression in NRC(=) is polymorphically
equivalent to {dropA x | x ∈ R}. Consequently, no expres-
sion in NRC(=) is polymorphically equivalent to dropA x.

This result (which we will prove in Section 3.3) was first
obtained for the relational algebra [54]. In fact, many clas-
sical operators that are “derived” in the standard relational
algebra become primitive in the polymorphic setting. For
example, the semijoin operator � has no polymorphic equiv-
alent in the relational algebra, while cartesian product × and
join � are polymorphically independent of each other [54].
To illustrate the latter, observe that the simulation of R � S
by means of projection, selection, renaming, and cartesian
product π(σ(ρ(R)×ρ(S))) only works if we know the schemas
of R and S, otherwise we do not know what renamings to
apply. Conversely, although R × S is equivalent to R � S
when R and S have disjoint sets of attributes, R � S is
well-typed whenever R and S agree on the types of the at-
tributes they have in common, whereas R × S is well-typed
only when R and S have no attributes in common.

The situation in the presence of complex objects is similar.
Let NRC(=, drop,×, �) be the extension of NRC(=, drop)
with expressions of the form e1×e2 and e1 � e2 that perform
the cartesian product and natural join of two sets of records,
respectively. The corresponding typing rules are given in
Figure 3, where φ1, φ2, and ψ stand for record types like
(A : r,B : s, C : t) and φ1 + φ2 stands for the extension of
φ1 by attributes in φ2. This is the record type we obtain
by adding to φ1 all attributes and types in φ2 that do not
occur in φ1. For example, (A : r, B : s, C : t)+(B : t, D : r) =
(A : r, B : s, C : t, D : r). As expected, the type rule for e1 ×
e2 states that if e1 and e2 are sets of records with disjoint
attributes, then the result is a set of records with all these
attributes. Similarly, the type rule for e1 � e2 states that if
e1 and e2 are sets of records that agree on the types of their
common attributes (given by ψ), then the output type is a
set of records containing all attributes of e1 and e2.

Theorem 14. No expression in NRC(=,drop,×) is poly-
morphically equivalent to e1 � e2. Similarly, no expression
in NRC(=, drop, �) is polymorphically equivalent to e1×e2.

One can come up with many more operators that are poly-
morphically inexpressible even in NRC(=,drop,×, �). An
interesting question for further research is therefore what op-
erators yield a language that is in some sense “polymorphi-
cally complete”? In the extreme, the answer is already given
by query languages for semi-structured data models (such as
XML) that incorporate type information in the data itself,
thereby allowing type inspection during evaluation. Query
languages for these models are therefore essentially type-
independent and extremely polymorphic. But perhaps far
less drastic measures are needed to reach the same degree
of polymorphism.

3.3 Type Inference
The polymorphic nature of expressions as introduced in

Section 3.2 immediately raises the question of how one can
compute the set of all type assignments under which a given
expression it is well-typed. Such type inference is often use-
ful in practice. For example, systems such as Kleisli [63]
query highly heterogeneous and remote data sources, rang-
ing from traditional relational databases to non-traditional
complex structured files to data generated by specialized
software packages. While some of these sources have schemas
that are accessible, many lack them. Type inference can be
helpful in telling for which kinds of sources a given query
is suitable, and is in fact imperative for query optimiza-

148

tion [63]. Moreover, even though query languages for semi-
structured data models are essentially schema-independent,
querying is more effective if at least some form of schema is
available (perhaps computed from the particular instance) [8,
20]. Although it has received little attention in this con-
text, type inference can then be helpful in telling for which
schemas a given query is suitable. Also, stored procedures [33]
are 4GL and SQL code fragments stored in database dictio-
nary tables. Whenever the schema changes, some of the
stored procedures may become ill-typed, while others that
were ill-typed may become well-typed. Having an explicit
logical description of all typings of each stored procedure
may be helpful in this regard.

Another motivation for type inference stems from the area
of database programming languages. Recall that a database
programming language is a general-purpose programming
language featuring a native, integrated query language. Re-
cent examples of such languages include of course XQuery [6],
but also C� and Visual Basic [7]. As type annotations are
often not required for expressions of the integrated query
language, type inference for such expressions forms a cor-
nerstone of the type checking algorithm of the entire lan-
guage. In particular, type inference must identify untypable
expressions that have no typings, like {}.A and x.A ∪ x, as
these are ill-typed no matter the context in which they are
used.

Inferring types for a given language requires two ingre-
dients: (1) a notion of type formulas capable of describing
the set of all typings of expressions in the language; and
(2) an algorithm that is capable of effectively computing
such formulas starting from the expressions themselves. For
NRC(=), the type formulas are constructed from the poly-
types π, which are the extension of ordinary types with type
variables α, as given by the syntax

π ::= α | atom | (A : π, . . . , B : π′) | {π}.

The semantics of a polytype π is just a set of types. In par-
ticular, it is the set {σ(π) | σ a substitution}, where a substi-
tution is a mapping from type variables to types, and where
σ(π) stands for the type obtained from π by replacing all
type variables α by σ(α). For example, the semantics of {α}
is the set {{atom}, {{atom}}, {(A : atom, B : atom)}, . . . }.

Polytypes alone do not suffice to describe the set of all typ-
ings of a given expression. Rather, we also need the concept
of a kinding assignment, which is a mapping κ from a finite
set of type variables to record polytypes (A : π, . . . , B : π′).
A substitution σ respects κ if κ(α) = (A : π, . . . , B : π′) im-
plies that σ(α) = (A : σ(π), . . . , B : σ(π′))+r for some record
type r.2 For example, if κ(α) = (A : α′) and α′ is not in the
domain of κ, then any σ that maps α to a record type with
attribute A respects κ.

Type inference for NRC(=) is a particular instance of
type inference for the database programming language Machi-
avelli [10] as studied by Ohori and Buneman. Their results
imply:

Theorem 15. There exists a polynomial time algorithm
that, given an expression e(x, . . . , y) in NRC(=), returns
false if e is untypable, and otherwise returns a formula of

2Recall from Section 3.2 that + stands for the extension of
record types.

the form κ; x : πx, . . . , y : πy → π such that

{(T, σ(π)) | σ a substitution respecting κ

and T (x) = σ(πx), . . . , T (y) = σ(πy)}.
is exactly the set of e’s typings.

For example, when e = {x.A | x ∈ R} this algorithm
returns κ, R : {α} → {α′}) with dom(κ) = {α} and κ(α) =
(A : α′). It returns false on the untypable {{}.A | x ∈ {}}
and x.A ∪ x.

Theorem 15 actually implies Theorem 13:

Proof of Theorem 13. Suppose, for the purpose of contra-
diction, that some expression e in NRC(=) is polymor-
phically equivalent to {dropA x | x ∈ R}. In particular,
e and {dropA x | x ∈ R} have the same non-empty set
of typings which, by application of Theorem 15 on e, is
described by some κ; R : πR → π. Since (T, s) can be a
typing of {dropA x | x ∈ R} only if s = {t} with t a
record type not containing attribute A, π must be of the
form {(B : πB, . . . , C : πC)} for some attributes B, . . . , C.
(If π is of the form {α} with κ(α) = (B : πB, . . . , C : πC)
then we can always instantiate π to {t} with t a record
type containing A.) But now the typing (T, {(D : s})) with
D 	∈ {A, B, . . . , C} and T (R) = {(A : r,D : s)} is not de-
scribed by κ; R : πR → π although it is a typing of {dropA x |
x ∈ R}. This gives the desired contradiction.

In other words, the formulas κ; x : πx, . . . , y : πy → π are
unsuitable to describe the typings of NRC(=,drop) expres-
sions because kinding assignments can only require that
some attributes are present in a record type, not that they
are absent. This can be resolved by moving to type schemes
τ which in addition to type variables also contain row vari-
ables ρ:

τ ::= α | atom | (A : τ, . . . , B : τ ′) | (A : τ, . . . , B : τ ′; ρ) | {τ}.
Each row variable comes with a fixed finite set of attributes
attr(ρ). The semantics of a polytype τ is again a set of
ordinary types and is defined as follows. First, extend the
notion of a substitution to be a function that maps type
variables to types and row variables to record types such
that σ(ρ) contains no attributes in attr(ρ). Then extend
substitutions to type schemes as follows:

σ(atom) = atom

σ(A : τ, . . . , B : τ ′) = (A : σ(τ), . . . , B : σ(τ ′))

σ(A : τ, . . . , B : τ ′; ρ) = (A : σ(τ), . . . , B : σ(τ ′)) + σ(ρ)

σ({τ}) = {σ(τ)}.
The semantics of a type scheme τ is then the set {σ(τ) |
σ a substitution}.

The techniques of Rémy [39] can then be used to show
that:

Theorem 16. There exists a polynomial time algorithm
that, given an expression e(x, . . . , y) in NRC(=,drop), re-
turns false if e is untypable, and otherwise returns a formula
x : τx, . . . , y : τy → τ such that

{(T, σ(τ)) | σ a substitution and

T (x) = σ(τx), . . . , T (y) = σ(τy)}.
is exactly the set of e’s typings.

149

For example, when e = {x.A | x ∈ R} this algorithm
returns R : {(A : α; ρ)} → {α} with attr(ρ) = {}. When
e = {dropA x | x ∈ R} it returns R : {(A : s; ρ)} → {ρ} with
attr(ρ) = {A}.

Using a similar reasoning to the proof of Theorem 13,
one can show that the formulas with type schemes as above
are unsuitable to describe the typings of expressions like
x × y and x � y. One possible remedy to this problem is to
allow record type schemes with multiple row variables like
(A : r; ρ, ρ′). Substitutions operate on such schemes in the
obvious way:

σ(A : τ, . . . , B : τ ′; ρ, . . . , ρ′)

= (A : σ(τ), . . . , B : σ(τ ′)) + σ(ρ) + · · · + σ(ρ′).

If we adopt the convention that distinct row variables can
only be substituted with record types having disjoint set of
attributes, then the formula x : {(ρ)}, y : {(ρ′)} → {(ρ, ρ′)}
faithfully describes the typings of x × y. Also, the formula
x : {(ρ, ρ′)}, y : {(ρ′, ρ′′)} → {(ρ, ρ′, ρ′′)} describes the typ-
ings of x � y. This approach lies at the basis of a type
inference algorithm for the relational algebra [54]. It has
the disadvantage that for expressions like

R1 � (R2 � (· · · � Rn) . . .),

the inferred type formula needs one row variable for each
subset {i, . . . , j} ⊆ {1, . . . , n} to describe the attributes that
only inputs Ri, . . . , Rj have in common. As such, the in-
ferred type formulas can be of exponential size.

In the theory of programming languages one also finds
type inference algorithms for languages with operators like ×
and �, often in the presence of even more powerful features
such as higher order functions [10, 37, 46, 47, 61]. There,
the preferred solution for describing the typings of x × y
and x � y is to move to constrained type formulas. These
are formulas of the form C; x : τx, . . . , y : τy → τ where C is
often a conjunctive logical formula that constrains the legal
substitutions of the row variables occurring in τx, . . . , τy, τ .
For example, if ρ#ρ′ denotes that ρ and ρ′ should be sub-
stituted with record types having disjoint sets of attributes
and if ρ = ρ′ + ρ′′ denotes that ρ should only be substituted
with the extension of ρ′ and ρ′′, then the typings of x× y is
described by

ρ′#ρ′′ ∧ ρ = ρ′ + ρ′′; x : {ρ′}, y : {ρ′′} → {ρ}.
This approach can be followed to do type inference for the
full NRC(=, drop,×, �) [56]. It has the advantage that, in
contrast to the type inference algorithm for the relational
algebra [54], a type formula for a given NRC(=, drop,×, �)
expression can always be inferred in polynomial time [56]. It
has the disadvantage that, in contrast to the type inference
algorithms for the relational algebra and NRC(=,drop), the
inferred constrained type formulas may become quite com-
plex (which makes them less suitable for presentation to
the user) and may even be unsatisfiable. In particular,
the constraint-based type inference algorithm for NRC(=,
drop,×, �) returns an unsatisfiable type formula instead of
false on untypable expressions.

We should emphasize that it is unlikely that any type
inference algorithm for the relational algebra or NRC(=,
drop,×, �) that outputs false on untypable expressions runs
in less than exponential time. Indeed, already the typability
problem, defined as

Typability

Input: Expression e(x, . . . , y).
Problem: Decide whether T � e : s for some (T, s).

is NP-complete for both the relational algebra [54, 59] and
NRC(=, drop,×, �) [56]. Notice that in contrast, typability
for NRC(=,drop) is in polynomial time by Theorem 16.

4. REFLECTION
At the end of Section 3.2, we already referred to the sit-

uation in XML, where we are able to do type checking at
run time in the language itself: we can, within an XQuery
program, check whether some value is of some XML Schema
type. Such languages are said to be capable of type reflec-
tion. Type reflection is possible in many languages, and
depending on the underlying data model and type system,
it comes very naturally (such as in XQuery but also much
earlier in Scheme) or it must really be provided as an extra
feature (such as the reflection package in Java but also much
earlier the metaclasses in Smalltalk).

In the context of the relational data model or the complex-
object data model that we have been considering in this pa-
per, type reflection as an extra feature of query languages
has been studied under the heading “schema querying” [14,
27, 40]. Moreover, data models and query languages have
been designed in which not only schema values, such as at-
tribute names or relation names, can be made available as
data values, but also vice versa: data values can be “pro-
moted” to schema values [21, 25, 64].

The concept of reflection goes further than mere type re-
flection, however. When programs, or program fragments,
can be treated as values, which can also be generated, in-
spected, and interpreted at run time, we obtain a more gen-
eral kind of reflection. This kind of reflection is as old as
the concept of universal turing machine, which takes an ar-
bitrary turing machine M represented as a string, as input,
and runs M on the fly. Likewise, in the Scheme language,
there is an explicit built-in function eval that takes a pro-
gram, represented as a nested list, and runs P on the fly. Of
course, as shown by the universal turing machine, in compu-
tationally complete languages (like Scheme), such a function
eval is not a primitive, but merely a convenient feature to
allow for a more natural or succinct expression of certain
advanced programming constructions. (Closer to home, one
can easily imagine a Java interpreter written in Java itself.)

The situation changes, however, when dealing with query
languages that are typically not computationally complete.
For concreteness, consider XQuery expressions (XQuery with-
out function definitions, so that it is not computationally
complete). We can naturally represent the syntax tree of an
XQuery expression in XML, as done for example in XQueryX
[65]. It thus becomes natural to enhance XQuery with eval,
and wonder whether eval is really primitive: can we write
an XQuery expression interpreter using an XQuery expres-
sion? Intuitively the answer is negative, and this question
has been formally studied in the context of the relational
algebra [51].

Concretely, suppose we fix a relational database schema,
and agree about some standard way to represent the syntax
tree of a relational algebra expression in one or more rela-
tions. There are many natural ways to do this; it is only
important that this is done in such a way that a total order

150

on the components of the expression can be recovered using
the relational algebra. This can be accomplished, e.g., by in-
cluding the descendant relation of the syntax tree. Then the
new operator eval(r, . . . , s) evaluates the relational algebra
expression stored in the relations r, . . . , s. What happens
with the expressive power of the relational algebra when
we add in this new operator? Obviously it goes up dras-
tically, because the complexity of evaluating an arbitrary
relational algebra expression is pspace-complete [60], so the
data complexity of eval is pspace-complete, whereas the
data complexity of the relational algebra is in logspace [1].

The question becomes more interesting, however, when
we consider the expressive power of relational algebra with
eval with respect to standard generic queries: the input is
a normal relational database containing no stored expres-
sions. Then, the dynamic generation and evaluation, during
a query, of expressions that can depend on the input, be-
comes a purely computational tool, which now indeed adds
expressive power to the relational algebra:

Theorem 17 ([51]). A generic query is expressible in the
relational algebra enhanced with eval, if and only if it is
expressible in the relational algebra enhanced with for-loops.

Similarly, when recursive reflection is considered, where
expressions evaluated using eval may contain eval opera-
tors in turn, we get a more powerful equivalence with while-
loops instead of for-loops.

Example 18. Let us give an example of the power of reflec-
tion in the context of XQuery. Consider an XML document
D with the following structure:

R → T ∗ T → A, B

A → #PCDATA B → #PCDATA

Such a document represents a binary relation, and the task
is to compute the transitive closure of this relation. This
is impossible with a single XQuery expression, but using
reflection, we can do it as follows. Let n be the number of
T -elements in D; in XPath, n equals count($D//T). For
each j ∈ {1, . . . , n}, consider the following expression Ej :

for t1 in D//T, . . . , tj in D//T return
if every z in ((t1/B=t2/A),. . . ,(tj−1/B=tj/A))
satisfies z=fn:true() then
element(T){t1/A,tj/B} else ()

The concatenation expression E of E1, . . . , En clearly com-
putes the transitive closure of D. Note that the syntax tree
of E has bounded depth: the j different for-assignments in
Ej are j children of one FLRW node; the j − 1 different
equality tests in Ej are j children of one sequence construc-
tion node; and likewise, the n different subexpressions Ej

of E are n children of one sequence construction node. In
particular, an XML representation of E’s syntax tree can be
constructed from D by a single XQuery expression F . We
leave the writing of F as an exercise to the reader; note that
the only way in which E depends on D is through n. Then
eval(F) is a program that computes the transitive closure
of D.

4.1 Reflection and typing
So far, we have been considering untyped reflection, mean-

ing that eval can be applied to any subexpression e. Only
at run time it is checked that e indeed evaluates to a value

that represents a legal expression; if it does not, eval will
crash. Moreover, even if it does not crash, we do not know
what will be the type of the result of the evaluation.

The same problem already occurs with run-time type re-
flection. For example, assume that t is a record variable
holding a record without a field A, and that x is a field
variable that has value A; then the evaluation of t.x will
crash. Most approaches to schema query languages avoid
such crashes by masking them by the boolean value ‘false’.
More concretely, one turns all operations into predicates:
one needs to use a value variable v, and evaluate the pred-
icate t.x = v. When t has no field x, the predicate will
simply evaluate to false. This is not always very satisfac-
tory, because the predicate will also evaluate to false when
t does have a field x, but the field’s value is different from
v. Clearly one wants to distinguish these two very different
origins of the value false.

Sheard and his collaborators have shown how reflection
can be typed in the context of the MetaML language [48,
11]. In the same vein, we can define a typed reflective ex-
tension of the relational algebra [36]. The three basic ideas
are the following: (1) in relations, distinguish between data
attributes that store ordinary atomic data values, and ex-
pression attributes that store relational algebra expressions;
(2) expression attributes are typed by relation schemes: all
expression stored in the column of an attribute typed by re-
lation scheme S evaluate to relations of scheme S; (3) pro-
vide special operators to syntactically manipulate stored ex-
pressions: these operators are strongly typed so that the re-
lation scheme of the resulting expressions is determined by
the relation schemes of the input expressions. Using these
ideas, one can design a statically typed reflective extension
of the relational algebra, where well-typed expressions, in-
cluding eval, will never crash.

It appears that soundness has a price though. First, in
the approach just mentioned [36], the reflective relational
algebra has not more expressive power than the standard
relational algebra without eval, as far as standard generic
database queries are concerned. This is in sharp contrast
with Theorem 17. Second, in a typed meta-programming
language, it is not easy to attain sufficient expressive power
in the syntactic manipulation of stored expressions. For ex-
ample, pattern matching is a very useful syntactic operation,
but expressions of wildly varying output types can match the
same pattern. The design of compile-time reflective query
languages is certainly not yet a closed area.

4.2 Reflection in SQL
Using modern SQL/XML technology, it is very easy to im-

plement a reflective extension of SQL [52, 53]. Expressions,
in XML format using an appropriate DTD for SQL expres-
sions, can be stored in XML columns of tables. Using the
SQL/XML functions XMLQUERY, XMLTABLE, and XMLEXISTS,
stored expressions can be syntactically manipulated and quer-
ied. So it suffices to add a table-valued user-defined function
SQLEVAL which takes as input an XML value representing an
SQL expression; submits this query to the database system;
and returns the resulting table. It is a student exercise to
write such a function SQLEVAL in Java using JDBC and some
appropriate XML parser.

Example 19. To give an idea of the possibilities of reflective
SQL, consider a table T (N, V) storing a set of views: N of
type string is the name of the view, and V of type XML

151

is the view expression. Suppose we know that each view
stored in T has a column id. Now we want to know the
names of the views that contain the id 345 when evaluated
on the current database instance. For that we could write:

select N

from T, table(SQLEVAL(T.V)) as S(id)

where S.id=345

For another example, suppose the underlying database has
two ordinary tables R1 and R2, and we want to know the
names of the views stored in T that would show up new id’s
if we added all tuples of R2 to R1. For that, we need an
XQuery function my:replace that replaces, in a given XML
document representing an SQL expression, every table refer-
ence to R1 by the subquery (table R1 union table R2).
(Actually such a replace function is much easier to write
in XSLT than in XQuery.) We can then write in reflective
SQL:

select N

from T, table(SQLEVAL(T.V)) as S(id)

where id not in table(SQLEVAL(my:replace(T.V)))

We should not forget that the idea of stored query expres-
sions, and their dynamic evaluation in other queries, was
already proposed by Stonebraker in 1984 [43, 44]. We also
note that a limited form of reflection in SQL (the reflection
is essentially limited to where-clauses), is already supported
by Oracle [19].

Acknowledgment
Jan Van den Bussche is grateful to Emmanuel Waller, who
first introduced him to polymorphic type checking more
than ten years ago. Dirk Van Gucht is grateful to Patrick
C. Fischer and Daniel Friedman, who introduced him to the
nested relational data model (more than twenty years ago)
and to reflection in programming languages (more than fif-
teen years ago), respectively.

5. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] Serge Abiteboul, Rakesh Agrawal, Phil Bernstein,
Mike Carey, Stefano Ceri, Bruce Croft, David DeWitt,
Mike Franklin, Hector Garcia Molina, Dieter Gawlick,
Jim Gray, Laura Haas, Alon Halevy, Joe Hellerstein,
Yannis Ioannidis, Martin Kersten, Michael Pazzani,
Mike Lesk, David Maier, Jeff Naughton, Hans Schek,
Timos Sellis, Avi Silberschatz, Mike Stonebraker, Rick
Snodgrass, Jeff Ullman, Gerhard Weikum, Jennifer
Widom, and Stan Zdonik. The Lowell database
research self-assessment. Commun. ACM,
48(5):111–118, 2005.

[3] Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and
Victor Vianu. Typechecking XML views of relational
databases. ACM Transactions on Computational
Logic, 4(3):315–354, 2003.

[4] Noga Alon, Tova Milo, Frank Neven, Dan Suciu, and
Victor Vianu. XML with data values: typechecking
revisited. Journal of Computer and System Sciences,
66(4):688–727, 2003.

[5] Henk P. Barendregt. The Lambda Calculus: its Syntax
and Semantics. North-Holland, 1984.

[6] Scott Boag, Don Chamberlin, Mary F. Fernández,
Daniela Florescu, Jonathan Robie, and Jérôme
Siméon. XQuery 1.0: An XML Query Language. W3C
Working Draft, February 2005.

[7] Don Box and Anders Hejlsberg. The LINQ Project:
.NET Language Integrated Query.
http://msdn.microsoft.com/netframework/future/linq/,
March 2006.

[8] Peter Buneman, Susan B. Davidson, Mary F.
Fernandez, and Dan Suciu. Adding structure to
unstructured data. In Foto N. Afrati and Phokion
Kolaitis, editors, Database Theory—ICDT’97, 6th
International Conference, volume 1186, pages
336–350, Delphi, Greece, 1997. Springer.

[9] Peter Buneman, Shamim A. Naqvi, Val Tannen, and
Limsoon Wong. Principles of programming with
complex objects and collection types. Theoretical
Computer Science, 149(1):3–48, 1995.

[10] Peter Buneman and Atsushi Ohori. Polymorphism
and type inference in database programming. ACM
Transactions on Database Systems, 21(1):30–76, 1996.

[11] C. Calcagno, E. Moggi, and T. Sheard. Closed types
for a safe imperative MetaML. Journal of Functional
Programming, 13(3):545–571, 2003.

[12] Luca Cardelli. Type systems. In The Computer
Science and Engineering Handbook, pages 2208–2236.
CRC Press, 1997.

[13] R. G. G. Cattell, Douglas K. Barry, Mark Berler, Jeff
Eastman, David Jordan, Craig Russell, Olaf Schadow,
Torsten Stanienda, , and Fernando Velez, editors. The
Object Data Standard: ODMG 3.0. Morgan
Kaufmann, 2000.

[14] W. Chen, M. Kifer, and D.S. Warren. HiLog: A
foundation for higher-order logic programming.
Journal of Logic Programming, 15(3):187–230, 1993.

[15] Luis Damas and Robin Milner. Principal type-schemes
for functional programs. In POPL ’82: Proceedings of
the 9th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 207–212,
New York, NY, USA, 1982. ACM Press.

[16] Denise Draper, Peter Fankhauser, Mary F. Fernández,
Ashok Malhotra, Kristoffer Rose, Michael Rys, Jérôme
Siméon, and Philip Wadler. XQuery 1.0 and XPath
2.0 Formal Semantics. W3C Working Draft, February
2005.

[17] Mary F. Fernández, Ashok Malhotra, Jonathan
Marsh, Marton Nagy, and Norman Walsh. XQuery 1.0
and XPath 2.0 Data Model. W3C Working Draft,
February 2005.

[18] Alain Frisch, Giuseppe Castagna, and Véronique
Benzaken. CDuce: an XML-centric general-purpose
language. In Proceedings of the eighth ACM SIGPLAN
International Conference on Functional Programming,
pages 51–63. ACM Press, 2003.

[19] D. Gawlick, D. Lenkov, A. Yalamanchi, et al.
Applications for expression data in relational database
systems. In Proceedings 20th International Conference
on Data Engineering, pages 609–620. IEEE Computer
Society, 2004.

[20] Roy Goldman and Jennifer Widom. Dataguides:
Enabling query formulation and optimization in
semistructured databases. In VLDB’97 Proceedings of

152

23rd International Conference on Very Large Data
Bases, pages 436–445, 1997.

[21] M. Gyssens and L.V.S. Lakshmanan. A foundation for
multi-dimensional databases. In Proceedings 23rd
International Conference on Very Large Data Bases,
pages 106–115. Morgan Kaufmann, 1997.

[22] Roger Hindley. The principal type-scheme of an object
in combinatory logic. Transactions of the American
Mathematical Society, 146:29–60, December 1969.

[23] Haruo Hosoya and Benjamin C. Pierce. XDuce: A
statically typed XML processing language. ACM
Transactions on Internet Technology (TOIT),
3(2):117–148, 2003.

[24] Haruo Hosoya, Jérôme Vouillon, and Benjamin C.
Pierce. Regular expression types for XML. ACM
Transactions on Programming Languages and
Systems, 27(1):46–90, 2005.

[25] M. Jain, A. Mendhekar, and D. Van Gucht. A uniform
data model for relational data and meta-data query
processing. In Advances in Data Management ’95,
pages 146–165. Tata McGraw-Hill, 1995.

[26] Christoph Koch. On the complexity of nonrecursive
xquery and functional query languages on complex
values. ACM Trans. Database Syst., 31(4):1215–1256,
2006.

[27] L.V.S. Lakshmanan, F. Sadri, and S.N. Subramanian.
SchemaSQL: An extension to SQL for multidatabase
interoperability. ACM Transactions on Database
Systems, 26(4):476–519, 2001.

[28] Zi Lin, Bingsheng He, and Byron Choi. A quantitative
summary of XML structures. In ER 2006 - 25th
International Conference on Conceptual Modeling,
volume 4215 of Lecture Notes in Computer Science,
pages 228–240. Springer, 2006.

[29] Sebastian Maneth, Alexandru Berlea, Thomas Perst,
and Helmut Seidl. XML type checking with macro
tree transducers. In Chen Li, editor, PODS, pages
283–294. ACM, 2005.

[30] Sebastian Maneth, Thomas Perst, and Helmut Seidl.
Exact XML type checking in polynomial time. In
Schwentick and Suciu [41], pages 254–268.

[31] Wim Martens and Frank Neven. Frontiers of
tractability for typechecking simple XML
transformations. In Proceedings of the Twenty-third
ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 23–34. ACM
Press, 2004.

[32] Wim Martens and Frank Neven. On the complexity of
typechecking top-down XML transformations. Theor.
Comput. Sci., 336(1):153–180, 2005.

[33] Jim Melton. Understanding SQL’s Stored Procedures.
Morgan Kaufmann, San Mateo, CA, USA, 1998.

[34] Robin Milner. A theory of type polymorphism in
programming. J. Comput. Syst. Sci., 17(3):348–375,
1978.

[35] Tova Milo, Dan Suciu, and Victor Vianu.
Typechecking for XML transformers. In Proceedings of
the Nineteenth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages
11–22. ACM Press, 2000.

[36] F. Neven, J. Van den Bussche, D. Van Gucht, and

G. Vossen. Typed query languages for databases
containing queries. Information Systems,
24(7):569–595, 1999.

[37] Atsushi Ohori. A polymorphic record calculus and its
compilation. ACM Transactions on Programming
Languages and Systems, 17(6):844–895, 1995.

[38] Benjamin C. Pierce. Types and Programming
Languages. MIT Press, 2002.

[39] Didier Rémy. Type inference for records in a natural
extension of ML. In Carl A. Gunter and John C.
Mitchell, editors, Theoretical Aspects Of
Object-Oriented Programming. Types, Semantics and
Language Design. MIT Press, 1993.

[40] K. Ross. Relations with relation names as arguments:
Algebra and calculus. In Proceedings 11th ACM
Symposium on Principles of Database Systems, pages
346–353, 1992.

[41] Thomas Schwentick and Dan Suciu, editors. Database
Theory - ICDT 2007, 11th International Conference,
Barcelona, Spain, January 10-12, 2007, Proceedings,
volume 4353 of Lecture Notes in Computer Science.
Springer, 2007.

[42] H. Schwichtenberg. Definierbare funktionen in
λ-kalkül mit typen. Archiv für mathematische Logik
und Grundlagenforschung, 174:113–114, 1976.

[43] M. Stonebraker et al. QUEL as a data type. In
B. Yormark, editor, Proceedings of SIGMOD 84
Annual Meeting, volume 14:2 of SIGMOD Record,
pages 208–214. ACM Press, 1984.

[44] M. Stonebraker et al. Extending a database system
with procedures. ACM Transactions on Database
Systems, 12(3):350–376, 1987.

[45] Dan Suciu. Typechecking for semistructured data. In
Database Programming Languages, 8th International
Workshop, DBPL 2001, Revised Papers, volume 2397
of Lecture Notes in Computer Science, pages 1–20.
Springer-Verlag, 2001.

[46] Martin Sulzmann. A General Framework for
Hindley/Milner Type Systems with Constraints. PhD
thesis, Yale University, 2000.

[47] Martin Sulzmann. A general type inference framework
for Hindley/Milner style systems. In Functional and
Logic Programming: FLOPS 2001, volume 2024 of
Lecture Notes in Computer Science, pages 248–263.
Springer-Verlag, 2001.

[48] W. Taha and T. Sheard. MetaML and multi-stage
programming with explicit annotations. Theoretical
Computer Science, 248(1–2):211–242, 2000.

[49] Wolfgang Thomas. Languages, Automata, and Logic,
volume 3 of Handbook of Formal Languages, chapter 7,
pages 389–456. Springer, 1997.

[50] Henry S. Thompson, David Beech, Murray Maloney,
and Noah Mendelsohn. XML Schema Part 1:
Structures. W3C Recommendation, May 2001.

[51] J. Van den Bussche, D. Van Gucht, and G. Vossen.
Reflective programming in the relational algebra.
Journal of Computer and System Sciences,
52(3):537–549, June 1996.

[52] J. Van den Bussche, S. Vansummeren, and G. Vossen.
Meta-SQL: Towards practical meta-querying. In
Advances in Database Technology—EDBT 2004,

153

volume 2992 of Lecture Notes in Computer Science,
pages 823–825. Springer, 2004.

[53] J. Van den Bussche, S. Vansummeren, and G. Vossen.
Towards practical meta-querying. Information
Systems, 30(4):317–332, 2005.

[54] J. Van den Bussche and E. Waller. Polymorphic type
inference for the relational algebra. Journal of
Computer and System Sciences, 64:694–718, 2002.

[55] Jan Van den Bussche, Dirk Van Gucht, and Stijn
Vansummeren. Well-definedness and semantic
type-checking for the nested relational calculus.
Theoretical Computer Science, 371(3):183–199, 2007.

[56] Jan Van den Bussche and Stijn Vansummeren.
Polymorphic type inference for the named nested
relational calculus. ACM Transactions on
Computational Logic, To appear.

[57] Stijn Vansummeren. Deciding well-definedness of
XQuery fragments. In Proceedings of the twenty-fourth
ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 37–48, New
York, NY, USA, 2005. ACM Press.

[58] Stijn Vansummeren. On deciding well-definedness for
query languages on trees. Technical report, Hasselt
University, 2005.

[59] Stijn Vansummeren. On the complexity of deciding
typability in the relational algebra. Acta Informatica,
41(6):367–381, 2005.

[60] M. Vardi. The complexity of relational query
languages. In Proceedings 14th ACM Symposium on
the Theory of Computing, pages 137–146, 1982.

[61] Mitchell Wand. Type inference for record
concatenation and multiple inheritance. Information
and Computation, 93(1):1–15, 1991.

[62] Piotr Wieczorek. Complexity of typechecking XML
views of relational databases. In Schwentick and Suciu
[41], pages 239–253.

[63] Limsoon Wong. Kleisli, a functional query system.
Journal of Functional Programming, 10(1):19–56,
2000.

[64] C.M. Wyss and E.L. Robertson. Relational languages
for metadata integration. ACM Transactions on
Database Systems, 30(2):624–660, 2005.

[65] XML syntax for XQuery 1.0 (XQueryX). W3C
Working Draft 19 December 2003.

154

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

