Database interrogation using
conjunctive queries*

Michatl Bielecki' and Jan Van den Bussche?

! Warsaw University, Poland, mab@mimuw.edu.pl
2 University of Limburg, Belgium, jan.vandenbussche@luc.ac.be

Abstract. We consider a scenario where a client communicates with a
database server by posing boolean conjunctive queries, or more generally,
counts of conjunctive queries. We investigate to what extent features
such as quantification, negation, or non-equalities are important in such
a setting. We also investigate the difference between a setting where the
client can pose an adaptive sequence of queries, and a setting where the
client must pose a fixed combination of queries.

1 Introduction

Consider a scenario where a client program communicates with a database server
through some query language L that is rather limited. Due to the weakness of L,
the query @ the client really wants to ask is then often not expressible by a single
query in L. Still the client may be able to derive the answer to ) by performing
some computation during which a sequence of queries, rather than a single one,
is posed. We could call this “interrogation” rather than querying. Given the
ubiquity of client-server access to databases, studying database interrogation
appears to be well-motivated in general. A concrete example of interrogation
occurs in database security [5, 3].

Another well-known example of interrogation occurs in information integra-
tion using views [12]. There, L is given by a finite number of conjunctive queries
called views (possibly parameterized with selection constants, so that L is actu-
ally infinite), and @ is another conjunctive query, not in L. To answer @, one
tries to derive a conjunctive query Q' over the views that is equivalent to Q.
Executing this @)’ is then the computation performed by the client, and indeed
involves posing to the database a sequence of queries, namely, the views involved
in Q'.

In the above example, the sequence of queries the client poses is database-
independent; )’ depends only on ) and L but not on the database contents.
One can also think of scenarios where the sequence is adaptive in that the choice
of the next query to be posed depends on the actual answer received to the
previous query (and thus depends on the database contents).

In the present paper, we study the more general setting where L is the lan-
guage of all conjunctive queries, or a variation thereof. The big difference with

* Research supported by Polish KBN grant 7T11C 007 21.



information integration is that the client can now pose any conjunctive query
he likes, rather than only those provided as views. However, we have to be care-
ful or this setting becomes trivial: the identity query, which simply downloads
the entire database, is a conjunctive query, so a client needs to pose only that
single query and then has enough information to compute the answer to any
query he wants. Also from a practical server workload or network bandwidth
point of view, downloads may be undesirable. Hence, we focus our attention to
a setting where the server returns only boolean answers (i.e., the emptiness of
the answer), or more generally, counts (i.e., the cardinality of the answer). For
example, many search engines on the Internet directly return the cardinality of
the search result.

In this setting, we study the effects of features such as quantification, nega-
tion, or non-equalities, and we compare database-independent client strategies
to adaptive ones. Our contributions can be summarized as follows.

1. For database-independent strategies, non-equality tests matter. More con-
cretely, against a server that answers counts of conjunctive queries, there is a
simple conjunctive query extended with a non-equality test whose cardinality
cannot be derived in a database-independent way.

2. The same holds for quantification: against a server that answers counts of
quantifier-free conjunctive queries, there is a simple conjunctive query whose
cardinality cannot be derived in a database-independent way.

3. Complementing the previous negative result with a positive result, we show
that against the same server answering counts of quantifier-free conjunctive
queries, we can derive the count of any quantifier-free first-order query in a
database-independent way.

Together, these three results yield the following picture:

#afCQ = #qfFO < #CQ < #CQ(#)

Here, # stands for ‘counts of’, and L; < Lo (L; = Lo) means that for
database-independent clients, a server answering queries in Lo provides more
(the same) information than a server answering queries in L.

4. Moving to adaptive strategies, we improve upon an earlier observation by
Tyszkiewicz to note a general positive result: When the server answers
boolean conjunctive queries with non-equalities, the client can derive the
answer to any computable boolean query, using an adaptive strategy. Com-
bining this result with the previous one, this means that for adaptive clients,
a server answering just #qfCQ queries as above, already provides complete
information about the database up to isomorphism.

5. Finally, we consider the case of a server answering boolean conjunctive quer-
ies (without non-equalities). We present a number of observations showing
that the exact power of adaptive clients in this case is quite intriguing.

The basic setting of our work can be traced back to the framework of reflec-
tive relational machines (RRMs) introduced by Abiteboul, Papadimitriou and
Vianu [2]. Indeed, RRMs are exactly the right computational model for adaptive



clients communicating with a database server. The original model focused on ar-
bitrary boolean first-order queries as the query language; our work restricts this
to the popular class of conjunctive queries, and brings counts into the picture.
Different restrictions have already been studied by Tyszkiewicz. First, he revis-
ited the complexity properties of the original model in the case of existential
queries [8]. Then, he considered RRMs using boolean k-variable non-recursive
Datalog queries, and showed that they cannot compute all of k-variable Data-
log. He also considered RRMs using boolean k-variable first-order queries (FO)
with modular counting, and showed that they cannot express all of FO" with
counting [9]. RRMs using boolean FO* queries have also been studied by Turull-
Torres [7], who noted that they can compute precisely all computable queries
invariant under FOF-equivalence. In contrast, we will show here that RRMs us-
ing conjunctive queries can not compute all computable queries invariant under
conjunctive query equivalence.

2 Preliminaries

We work in the relational database model [1,10,11].

A query is a function @, mapping databases (over some fixed schema) to re-
lations. We assume familiarity with the class of conjunctive queries, CQ, possibly
extended with safe negation (including non-equalities), CQ(—), or just with non-
equalities, CQ(#). In a quantifier-free conjunctive query, qfCQ, all the variables
of the body are also in the head.

Ezxample 1. Over a database schema with a binary relation R and a unary re-
lation S, the following are examples of a CQ, CQ(#), CQ(—), and qfCQ, respec-
tively.

(z) < R(z,y), R(y, 2)

(z) < R(z,y), R(y,2), z #y

(z) « R(z,y), =S(y)
(z,y,2) < R(z,y), R(y, 2)

3 Database-independent model

A natural number query is a function, mapping databases to natural numbers.
With any normal query @) we can associate the natural number query #@, called
the count of @), that maps a database D to the cardinality of the relation Q(D).

Definition 1. Let L be a class of natural number queries, and let () be another
natural number query. We say that () can be derived in a database-independent
way from L if there is a finite sequence Q1, ..., Q of queries in L, and a com-
putable function f : N¥ — N, such that

QD) = f(Q1(D),...,Qk(D))
for any database D.



Example 2. Let L be #qfCQ: counts of quantifier-free conjunctive queries. Con-
sider the following qfCQ(—) query:

Q(z,y) < R(z,y), =S(y)

Then #(@ can be derived in a database-independent way from #qfCQ, simply
using the following two queries:

Indeed, we have #Q = #@Q1 — #Q>.

The technique illustrated in the above example can be generalized to arbi-
trary qfCQ(—) queries. Moreover, using the inclusion-exclusion principle #(A U
B) = #A+ #B —#(ANB), we can generalize this further to unions of qgfCQ(—)
queries. We thus obtain:

Proposition 1. The count of any union of qfCQ(=) queries can be derived in
a database-independent way from #qfCQ; the derivation function is simply an
integer arithmetic expression involving + and —.

The language of unions of qfCQ(—) queries can be thought of as the safe
fragment of the quantifier-free first-order queries. For example, any relational
algebra query involving equijoins, cartesian products, equality selections, unions,
and differences, but not projections, is a union of qfCQ(—) queries. Things be-
come simpler when we adopt the active-domain semantics for first-order queries
(so that safety is no longer an issue), and are prepared to consider the query
(z) + = = x a “conjunctive query”. Then Proposition 1 can be reformulated by
saying that the count of any quantifier-free first-order query can be derived in a
database-independent way from #qfCQ.

We note the following variation of Proposition 1. An injective qfCQ query,
denoted by ¢fiCQ, is a qfCQ query with modified semantics to the effect that all
variables must be instantiated by pairwise distinct values. Alternatively, qfiCQ
can be viewed as the fragment of qfCQ(#) where non-equalities must be present
between every pair of distinct variables. We have:

Proposition 2. Proposition 1 also holds from #qfiCQ instead of #qfCQ.
This proposition actually follows from Proposition 1, because the count of

any qfCQ query can be derived in a database-independent way from #qfiCQ, as
illustrated in the following simple example.

Ezample 8. The count of Q(z,y) < R(z,y) can be derived using the queries
Q1(z,y) < R(z,y), x #y and Q2(z) < R(z, z). Indeed, #Q = #Q1 + #Q>.



4 Quantification and non-equality

So far, we have seen that in a quantifier-free world, things are pretty simple, and
it does not matter whether the server answers merely conjunctive queries, or also
supports negation. We will now see that things change when quantifiers come into
play. We will first show that for database-independent clients, a server answering
counts of arbitrary conjunctive queries truly provides more information than a
server answering counts of quantifier-free ones only. We then show that adding
even a single non-equality makes the server even more informative.

More concretely, for two classes L; and Lo of natural number queries, we
write Ly < Lo if any natural number query derivable in a database-independent
way from L is this also from Lo. We write Ly < Lo if Ly < Ly but not Ls < L.
Then we have:

Theorem 1. #qfCQ < #CQ.
Theorem 2. #CQ < #CQ(#).

We will prove these theorems using the following two queries:

Q1(z) < S(z), R(z,y)
QZ(m) « R(a:,a:),R(a:,y), z 7é )

Specifically, we will show that #@); is not derivable from #qfCQ, and #Q not
from #CQ, in a database-independent way.

For any natural number n, define G, to be the structure over {R, S} given by
S ={0} and R ={(0,1),(0,2),...,(0,n)}. Any structure isomorphic to a G, is
called a star. A database that is a disjoint union of stars is called a constellation.

For any natural number n > 0, define the following constellations. The con-
stellation A,, consists of (?) copies of G; for every even i < n; the constellation
B,, consists of (7;) copies of G; for every odd i < n. We note:

Lemma 1. #Q(4,) # #Q1(B,)-

Proof. In any constellation, #@; counts the number of non-Gy’s. Now A,, con-
tains one Gy, while Bj, contains no Go’s. However, since 3, oven (1) = 2 0aa (5)

the total number of disjoint stars in A,, is the same as in B,,. Hence the lemma
follows.

Now suppose, for the sake of contradiction, that #@; is derivable in a
database-independent way from qfCQ. Since, by multiplication, counts of qfCQ’s
with a disconnected body are easily derivable in a database-independent way
from counts of qfCQ’s with a connected body, we may assume that the qfCQ
queries used to derive #@; all have a connected body. Moreover, by Proposi-
tion 2, we can actually use qfiCQ queries. Let C be the finite set of connected
qfiCQ queries used to derive #@);. Let n be the maximum number of variables
used in a query in C. Now observe that the result of applying a connected qfiCQ
query with j variables to a constellation equals the set of all embedded G;_;’s.
The following lemma, proven by a combinatorial calculation, is therefore crucial:



Lemma 2. For any j < n, the number of embedded G;’s is the same in A, as
n By.

We have now arrived at the desired contradiction. Indeed, Lemma 2 tells
us that A, and B, are indistinguishable by counts of queries in C. Since #Q1
was supposed to be derived using exactly these counts, this implies #Q1(A,) =
#Q1(By,), which contradicts Lemma 1.

Theorem 1 is thus proven. We move next to the proof of Theorem 2, which
is similar, but a bit more complicated due to the lack of a counterpart to Propo-
sition 2 in the case where we have quantification.

First, we need to adapt the notion of “star”. For any natural number n,
define H,, to be the relation {(0,0), (0,1),(0,2),...,(0,n)}. Any binary relation
isomorphic to a H,, is called a loop-star. The element corresponding to 0 is called
the center of the loop-star; the other elements are called rays. Any disjoint union
of loop-stars is called a loop-constellation.

Similarly to A, and B,, from above, we introduce, for any natural number
n > 0, the loop-constellation Aj,, which consists of ('}) copies of H; for every
even i < n; and Bj,, which consists of (7}) copies of H; for every odd i < n. We
have the following analogue to Lemma 1:

Lemma 3. #Q2(A]) # #Q2(B},).

Now suppose, for the sake of contradiction, that #@- is derivable in a
database-independent way from CQ. Since, using multiplication, counts of CQ’s
with a disconnected body are easily derivable in a database-independent way
from counts of CQ’s with a connected body, we may assume that the CQ queries
used to derive #(@2 all have a connected body. Let C be the finite set of con-
nected CQ queries used to derive #Q>. Let n be one more than the maximum
number of variables used in a query in C. If we can show that for any @ € C,
we have #Q(A),) = #Q(B,,), then, in view of Lemma 3, we have arrived at the
desired contradiction and proven Theorem 2.

Take an arbitrary @ € C, and an arbitrary loop-constellation D. Let m be
the number of variables in (). For any j < m, define

S(j,Q,D) :={t € Q(D) | t contains exactly j rays}.

Clearly,

m
#Q(D) = > #5(j,Q, D).
7=0
We therefore need to understand these sets S(j, @, D) better.
Fix j arbitrarily. Let £ be the set of all embedded images of H; in D, and let
(4, D) be the total number of these. For each E € &, fix an arbitrary embedding
eg : H; — E. Now define

T(j, @, D) = fer(u) | E € £ and u € S(j,Q, Hj)}.

We claim:



Lemma 4. S(j,Q,D)=T(j,Q, D).

Proof. The inclusion from right to left is clear. For the converse inclusion, take
t € S(4,Q, D). Writing @ as head < body, this means that there is a homomor-
phism o from body to D such that ¢ = o(head). Since body is connected, the
image of o is part of a loop-star H in D. Since t contains j rays, H has at least
j rays. Now let E be the image in £ having as rays exactly those of ¢t. Then we
can define the following homomorphism ¢’ from body to E:
o (z) = {U(m) if o(x) .appears in ¢;
the center of E otherwise.

This is indeed a homomorphism, thanks to the self-loop at the center of E. Since
e oo’ is then a homomorphism from body to H;, the tuple u := e,' (o' (head))

is in Q(H;). Moreover, u € S(j,Q, H;), since the number of rays in ¢'(head) =t
equals j. Hence, since eg(u) = ¢, we conclude that t € T'(j,Q, D) as desired.

We can now complete the proof as follows. Clearly, #7(j,Q, D) = €(j, D) x
#5(4,Q, Hj). Hence,

#Q(D) = Ze(j,D) x #(j,Q, Hj).

7=0
We now note the following analogue to Lemma 2:
Lemma 5. For any j < n, we have €(j, Al)) = e(j, B},).

Since the factors £(j, D) in the above expression for #Q (D) are the only that
depend on D, we conclude that #Q(A}) = #Q(B),), as desired.

5 The adaptive model

We now move on to the adaptive scenario, where a client, by performing an
arbitrarily complex computation during which he interacts with the database
server through conjunctive queries, tries to compute the answer to a more com-
plex query. The computational model for this is the reflective relational machine
(RRM) [2]. A RRM is a kind of oracle turing machine [4]. There is no input tape;
instead, there is a read-only answer tape and a write-only query tape. Whenever
the machine enters some special query state, it receives, on the answer tape, the
answer to the query currently written on the query tape.

In the original model, the allowed queries are boolean first-order queries. We
consider RRMs with boolean conjunctive queries, or more generally, counts of
conjunctive queries.

Our first observation contrasts the adaptive model to our previous database-
independent model. While we saw in the previous section that a database-
independent client that can ask only counts of qfCQ queries cannot even derive
some very simple counting queries, we now have:



Theorem 3. Every computable natural number query can be computed by a
RRM using counts of qfCQ queries.

Here, it is understood, as usual, that computable queries are invariant under
database isomorphisms [1].
Theorem 3 is actually a corollary of the following:

Proposition 3. A RRM using boolean CQ(#) queries can construct an isomor-
phic copy of the database.

Theorem 3 follows from Proposition 3 because we can get the answer to
a boolean CQ(#) query by looking at the count of its quantifier-free version.
Counts of qfCQ(#) queries can then in turn be expressed as counts of qfCQ
queries, by Proposition 1.

We give:

Proof (of Proposition 3). For simplicity of notation only, we work with a single
binary relation R. The proof is an improvement of observations already made
by Abiteboul, Papadimitriou and Vianu [2] and Tyszkiewicz [8].1

We begin by determining the cardinality of the active domain of the database.
If we adopt the active-domain semantics for first-order queries, this is easy: for
progressively larger values of n, we ask queries of the form

()« /\ T # Tj

1<i<j<n

until the answer becomes false. If, however, we want to work only with safe
queries (as we have done so far in this paper), we can still do this: by adding
atoms R(z;,y;) we can determine the cardinality #m (R) of the first projection
of R; similarly we can determine #m2(R), and #(m1 (R)N73(R)). The cardinality
of the active domain is then #m (R) + #ma(R) — #(m1 (R) N m2(R)).

Suppose we have determined the active domain to have n elements. Given an
order on the active domain, we can write R as an adjacency matrix. There are
at most n! possible such adjacency matrices. The following query asks whether
at least one of these matrices has a 1 in the first row, first column:

() < R(z1,71)

— If the answer is yes, we ask next whether, of the matrices that have a 1 in
the first row, first column, there is one that has also a 1 in the first row,
second column:

() < R(z1,21), R(z1,22), 21 # T2

If the answer is yes, we know there is a matrix starting with 11. If no, we
know there is a matrix starting with 10 (even more, all matrices starting
with 1 continue with 0.)

1 2] used full FO, [8] used CQ(=), and both ignored safety.



— If the answer is no, we know all matrices have a 0 in the first row, first
column, so now we ask whether there is one that has a 1 in the first row,
second column:

() < R(z1,22), ©1 # 22

if the answer is yes, we know there is a matrix starting with 01; if no, we
know all matrices start with 00.

And so on. After a total of n? queries we have recovered a complete adjacency
matrix.

Remark 1. In this paper, we have not considered constants in conjunctive quer-
ies. In the previous two sections, nothing much changes in the presence of con-
stants. In the adaptive model of the present section, however, constants would
allow us to recover the database ezactly, not up to isomorphism, by first de-
termining the size of the domain as above, then systematically enumerating all
possible domains of that size until a match is found, and finally determining the
actual tuples in the database. Of course, the number of queries required then
becomes totally unpredictable, while the number of queries used in the above
proof is polynomial.

Proposition 3 raises the question of what we can do without inequalities. An
immediate limitation on the power of a RRM using boolean conjunctive queries,
denoted RRM(CQ), is that two databases that are indistinguishable by boolean
conjunctive queries will of course be indistinguishable by the RRM as well. For-
mally, we call two databases A and B (over the same schema) CQ-equivalent
if there are homomorphisms f : A — B and g : B — A. It is well known [1,
11] that A and B are CQ-equivalent if and only if they are indistinguishable by
boolean conjunctive queries. As a consequence, any boolean or natural number
query computable by an RRM(CQ) must be invariant under CQ-equivalence.

Ezample 4. The binary relations (directed graphs) {(1,2),(1,3),(2,4),(3,4)}
and {(5,6),(6,7)} are CQ-equivalent. This shows that queries depending on
precise cardinalities, or on precise in- or out-degrees, or on precise structural
properties (such as “is the graph a tree?” or “is the graph a chain?”), are all not
computable by a RRM(CQ).

It is natural to conjecture that RRM(CQ)’s can compute precisely the com-
putable queries invariant under CQ-equivalence. We can disprove this, however.
Consider the boolean query SIMPLECYCLE over binary relations (directed
graphs) that asks whether the graph is CQ-equivalent to a simple cycle. We
have:

Proposition 4. SIMPLECYCLE is not computable by a RRM(CQ).

Proof. Suppose there is such a RRM, call it M. Consider the simple cycle A =
{(1,2),(2,1)}. M accepts A; let n be the maximum number of variables used in
any query asked by M during its run on A. Pick an odd number p > n. Define



the graph A’ as the disjoint union of A with a simple cycle of length p. Now
any boolean conjunctive query () using at most n variables cannot distinguish
A and A'. Hence, M will accept A" as well, which is incorrect because A’ is not
CQ-equivalent to a simple cycle.

We conclude by showing that nevertheless, some non-trivial structural queries
are computable by a RRM(CQ). Consider the following two natural number
queries on directed graphs: SHORTCYCLE, mapping G to the length of the
shortest cycle if G is cyclic, and to 0 otherwise; and LONGCHAIN, mapping G
to the length of the longest chain if G is acyclic, and to 0 otherwise. We have:

Proposition 5. Natural number queries SHORTCYCLE and LONGCHAIN are
computable by a RRM(CQ).

Proof. We pose the following queries for progressively larger values of n:

(T:Lhain() « R(mlamQ)a S R(xn—lamn)
ngcle() « R(xl)x2); LR R(mnfhxn): R(mnvml)

If the graph is cyclic, ngcle will become true at some point, at which the current
value of n gives us the value of SHORTCYCLE; if the graph is acyclic, Q%,ain
will become false at some point, at which the current value of n gives us the

value of LONGCHAIN.

6 Concluding remarks

A natural open question is, following the notation from Section 4, whether
#CQ(#£) < #CQ(—). More generally, the expressibility of counts of queries in
one language using counts of queries in another language seems to give rise to
many interesting and mathematically challenging questions, with clear links to
finite model theory [6]. We have only scratched the surface.

Another natural open question, given the popularity of conjunctive queries,
is to understand the exact power of RRM(CQ).

It could also be worthwhile to study complexity issues in database inter-
rogation using conjunctive queries, such as bounds on the number of queries
needed to achieve a certain goal, and the size of these queries. Results of this
nature for non-conjunctive queries have already been presented by Abiteboul,
Papadimitriou and Vianu [2] and Tyszkiewicz [8,9].

Acknowledgment

We thank Jerzy Tyszkiewicz and Andrzej Szalas for inspiring discussions.



References

1.

2.

10.

11.

12.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

S. Abiteboul, C.H. Papadimitriou, and V. Vianu. Reflective relational machines.
Information and Computation, 143(2):110-136, 1998.

N.R. Adam and J.C. Wortmann. Security-control methods for statistical databases:
A comparative study. ACM Computing Surveys, 21(4):515-556, 1989.

M. Davis. Computability and Unsolvability. McGraw-Hill, 1958.

D. Dobkin, A.K. Jones, and R.J. Lipton. Secure databases: Protection against user
influence. ACM Transactions on Database Systems, 4(1):97-106, 1979.

H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, second edition,
1999.

J.M. Turull Torres. Reflective relational machines working on homogeneous
databases. In Foundations of Information and Knowledge Systems, volume 1762
of Lecture Notes in Computer Science, pages 288-303. Springer, 2000.

J. Tyszkiewicz. Queries and algorithms computable by polynomial time existential
reflective machines. Fundamenta Informaticae, 32:91-105, 1997.

J. Tyszkiewicz. Computability by sequences of queries. Fundamenta Informaticae,
48:389-414, 2001.

J.D. Ullman. Principles of Database and Knowledge-Base Systems, volume I. Com-
puter Science Press, 1988.

J.D. Ullman. Principles of Database and Knowledge-Base Systems, volume II.
Computer Science Press, 1989.

J.D. Ullman. Information integration using logical views. Theoretical Computer
Science, 239(2):189-210, 2000.



