2. Constraint Databases, Queries, and Query
Languages

Jan Van den Bussche

2.1 Introduction

We formally define the constraint database model, the concept of query in this
model, and the basic constraint query languages provided by the relational
calculus, the relational algebra, and DATALOG. We show how a computa-
tionally complete constraint query language can be obtained by augmenting
the constraint relational calculus with basic programming language features.
We look into some basic model-theoretic issues concerning the constraint
relational calculus, in particular the equivalence problem. The notion of o-
minimal structure turns out to be a useful abstraction to discuss these issues
in some generality. We will see that equivalence of relational calculus queries
on constraint databases is typically undecidable, but that it is decidable in
the special case of conjunctive queries on constraint databases.

2.2 Logic

We start by recalling the needed basic concepts from logic.

Definition 2.2.1 (Vocabulary). A vocabulary, or signature, (2, consists of
three sets: a set F of function symbols, a set P of predicate symbols, and a
set C of constant symbols, together with an arity function that associates a
natural number to each element of F and P.

For example, 2 = (+,-,0, 1, <) is a vocabulary with two function symbols
of arity two (+ and -), one predicate symbol of arity two <, and two constant
symbols (0 and 1).

Definition 2.2.2 (Structure). Given a set U and a signature (2, an 2-
structure M on U is defined by assigning to each f € F of arity n a function
MU = U, to each p € P of arity n an n-ary predicate on U, that is, a
set PM C U™, and to each c € C an element M € U.

For example, for 2 = (+,-,0,1, <) and the set R of real numbers, we define
the real field R by making +®, -B <R the usual addition, multiplication,
and the ordering on R, and by interpreting O® and 1® as 0,1 € R. Note that
we shall almost always omit the superscript, since the interpretation of the
signature symbols is typically understood from the context.

22 Jan Van den Bussche

We now recall, for the sake of completeness, the definition of first-order
logic over a signature (2. Assume a countably infinite set of variables V. First,
terms are defined inductively as either a variable from V), or a constant from
C,or f(t1,...,tn), where f € F is of arity n, and ¢y, ..., t, are terms. We
write t(z1,...,2x) to denote that ¢ is a term that mentions only variables
from the list zy, ..., zx (listed in some agreed order).

Given a structure M = (U, (2), a term t(xy,...,x), and elements a;
;.5 G € U, the interpretation of ¢ given ay,...,a; in M, denoted by
tMlay, . .., ax], or tM]a] for short, is defined in the obvious way:

— If t is a variable z;, then tM[a] is a;;
— If t is a constant symbol ¢, then tM[a] is cM;
— If t is of the form f(t,...,t,), then tM[a] is fM(EM[a], ..., tMa)]).

An atomic formula is a formula of the form ¢t = ¢' or P(ty,...,t,) where
t,t', t1, ..., t, are terms, and P € P is an n-ary predicate. General formulas
are then built up from atomic formulas by using the boolean connectives
(A, V, =) and the quantifiers (Va and Jz). The variables occurring free in a
formula are defined in the usual manner. Formally, the free variables of:

— an atomic formula, are simple all the variables occurring in it;

— a negative formula —p, are exactly those of ;

— a conjunctive formula (¢ A1), or a disjunctive formula (¢ V ¢), are exactly
those that are free in either ¢ or v;

— a quantified formula Vz ¢ or 3z ¢, are exactly those of p, with the exception
of z itself.

A sentence is a formula without free variables. We write ¢(z1,...,2) to
denote that the free variables of formula ¢ are all from the list zq, ..., =g
(listed in some agreed order).

Given a structure M = (U, (2), a first-order formula ¢(x1,...,z), and
elements a1, ...,ar € U, the satisfaction of ¢ by (ai,...,ar) in M, denoted
by M [¢lag, ... ,ak], or M [pla] for short, is defined in the usual way:

- M = (t = t')[a] if tM[a] equals t'[a].

-~ M | P(ty,...,ty)a] if #M[a],...,tM[a]) € PM.

- M = (=p)[a] if M |= ¢[a] does not hold.

- M = (¢ AY)[a] if both M |= p[a] and M = ¢[a).

— M [(¢ V)[a] if either M | ¢[a] or M E ¢lal.

- M E (Vzy)[a] if for every element b € U, we have M [E ¢la,b], i.e.,
formula ¢(x1,...,xk,) is satisfied by (ai,...,ax,b) in M.

— M |= (3z p)[a] if for some element b € U, we have M [y[a, b].

Note that in this definition we are being very formal, using square brackets
pla] to denote interpretations for free variables. However, in the sequel, we
will also use a more intuitive notation with round brackets ¢(a).

The set of all first-order formulas over {2 is denoted by FO(f2). If M is
an {2-structure, we also write FO(M) for FO(£2).

Constraint Databases, Queries, and Query Languages 23
2.2.1 Quantifier elimination

We now introduce a very important concept in the context of constraint
databases:

Definition 2.2.3. Structure M is said to admit quantifier elimination if for
every first-order formula ¢(Z) over (2 there exists a quantifier-free formula
W(Z) such that

Vz(p < 1)

is valid in M. If such a v can be effectively computed, given p, we say that
the quantifier elimination is effective.

As we will see in this chapter, it is exactly in the context of structures
admitting effective quantifier elimination that we will be able, at least in
principle, to implement constraint database systems with first-order logic
query languages. Popular structures with this property include the real field
(R,+,-,0,1,<) and its restrictions that exclude multiplication, or include
only order (for these restrictions it does not matter whether we use real or
rational numbers).

2.3 The Constraint Database Model

The framework of constraint databases with corresponding query languages
can be applied to many different classes of constraints. We first need to define
constraints formally. Since the generalized relations we met in Chapter 1 are
subsets — finite or infinite — of some interpreted domain, such as the real field,
constraints are defined to be certain first-order formulas over the domain. For
example, in the case of the real field, polynomial inequality constraints are
just atomic first-order formulas over the structure (R, +,-,0,1, <).

2.3.1 Constraints

Here is the formal definition of “constraint” as it is used in the context of
constraint databases:

Definition 2.3.1 (Counstraints). Let {2 be a vocabulary. A constraint over
2 is an atomic first-order formula over (2, or the negation of an atomic
formula.

The representational power of constraints is captured by the following
definition.

24 Jan Van den Bussche

Definition 2.3.2 (Definability with Constraints). Given a vocabulary
2 and a structure M = (U, $2), a set X C U™ is called definable on M
with (2-constraints if it can be obtained as a finite boolean combination of
sets of the form

{(at,-..,an) EU" | M |=p(a1,...,an)}

where @ is an 2-constraint. If M is clear from the context, we will simply
say X is definable.

Given M = (U, 2y and M' = (U, '), we say that 2- and 2'-constraints
are equivalent over U if exactly the same sets are definable with 2 and (2'-
constraints in M and M'.

Ezample 2.3.1. The following classes of constraints will often be used in this
book.

1. Polynomial inequality constraints are constraints over 2 = (+,-,0, 1, <).
Such constraints correspond to conditions of the form p > 0 or p <
0, where p is a polynomial with integer coefficients. We interpret these
constraints over the structures R = (R, 2), Q = (Q, 2), Z = (Z, 2), and
the like.

2. Linear constraints are constraints over {2 = (+, <, 0,1). Such constraints
correspond to conditions of the form p > 0 or p < 0, where p is a linear
function a1z + - -+ + ajz; + ap with integer coefficients. We interpret
these constraints over the structures Riin = (R, £2), Quin = (Q, 2}, Zyjin =
(Z,£2), and the like.

3. Dense order constraints over the rationals are constraints over {2 = (<,
(¢)ceq), interpreted over the structure (Q, £2) (that is, rational numbers
with order and constants for every ¢ € Q). Such constraints are conditions
of the form z <y, x > y, x < ¢, or x > ¢, where z and y are variables,
and ¢ is a constant. Similarly, one can define dense order constraints over
the reals, or, for that matter, over any set on which a dense order is
available.

4. Equality constraints over an arbitrary infinite domain U are constraints
over the signature ((c¢)ccy)- Such constraints are conditions of the form
xT =y, T F#Y, x=c orx# c where x and y are variables, and ¢ is a
constant.

One may ask why we did not consider polynomial or linear constraints
with rational coefficients. The reason is that they are not more expressive
than those with integer coefficients. Indeed, let p be a polynomial in which
all coefficients are rational numbers a; /by, ..., am /by, where the a;s and b;s
are integers. Let p' = [[;~, b; - p. Then p' is as a polynomial with integer
coefficients, and p > 0 iff p’ > 0. In Chapter 9, however, linear constraints
with algebraic coefficients will also be discussed, and these are indeed more
expressive than the standard linear constraints defined above.

Constraint Databases, Queries, and Query Languages 25
2.3.2 Constraint databases

We are now ready to define what a constraint database exactly is, and which
information it represents.

Definition 2.3.3 (Constraint Database Model). Fiz a vocabulary (2.

1. A constraint k-tuple, in variables x1, ..., x, over (2, is a finite con-
junction o1 A---Npn, where each @;, for 1 <i < N, is an (2-constraint.
Furthermore, the variables in each @; are all among x4, ..., Tg.

2. A constraint relation of arity k, over (2, is a finite set r = {¢n,...,¥m},
where each v;, for 1 <i < M, is a constraint k-tuple in the same vari-
ables 1, ..., .

3. The formula corresponding to a constraint relation r is the disjunction
Y1V -Npr. We denote this formula by p,.; note that it is quantifier-free.
4. A constraint database is a finite collection of constraint relations.

In database theory, a k-ary relation r is assumed to be a finite set of k-
tuples (or points in a k-dimensional space). We will use the term unrestricted
relation for arbitrary finite or infinite sets of points in a k-dimensional space.
It is possible to develop query languages using such unrestricted relations. In
order to be able to do something useful with them, however, we need a finite
representation that we can manipulate. This is exactly what the constraint
tuples provide.

Definition 2.3.4 (Interpretation of Constraint Relations). Let {2 be
a vocabulary, and M = (U, 2) an 2-structure. Let r be a constraint relation
of arity k over 2, and let p,(x1,...,21) be the formula corresponding to r.
Then r represents the unrestricted k-ary relation which consists of all points
(a1,...,ax) such that p.(a1,...,a) is true in M. That is, it represents the
set

[[T]]Mn = {(ala"')ak)euk|M|:(10T(a1)"'>ak)}'

Observe that interpretations of constraint relations over M are precisely
the sets we called definable on M with 2-constraints (cf. Definition 2.3.2).
Indeed, constraint relations are just boolean combinations of constraints, pre-
sented in disjunctive normal form. It will be convenient to carry this termi-
nology further as follows:

Definition 2.3.5 (Definable Databases). Any finite collection of unre-
stricted relations is called an unrestricted database. An unrestricted database
is called definable if all its relations are definable in the sense of Defini-
tion 2.8.2. A constraint database D represents a definable database D' if D
consists precisely of one representation for each unrestricted relation in D'.

We will now see three fundamental examples of constraint relations.

26 Jan Van den Bussche

Ezample 2.3.2 (Representing the Relational Model). Let a relation r consist
of the tuples (1,2) and (3,4). These tuples are equivalent to the constraint
2-tuples z = 1Ay = 2 and x = 3 Ay = 4. Therefore, r corresponds to the
set {x =1Ay =22 =3Ay =4} and to the formula ¢, = (z = 1Ay =
2Q)V(x=3Ay=4).

In general, every finite k-ary relation r on a set U with m tuples
(at,... ,afc), i =1, ..., m, can be represented as a constraint relation us-
ing just equality constraints. That is, if ' is the constraint relation given by
the formula

m
oo, m) = (@ =a) A Ala = a}))
=1
then
[r'lmn = r,

where M = (U, (¢)ccu)-

Example 2.3.3. Let us now illustrate the framework using linear constraints.
Let the constraint relation 7 consist of the two constraint tuples

(y=2-zA-(r=y)) and (I1<z+y).
Corresponding to this r is the DNF formula
or(zy)=y=2-zA-(z=y)V(I<z+y).

This formula ¢, describes an infinite set of points in 2-dimensional space:
namely the half plane z + y > 1 and the line y = 2 - £ without the point
r=y=0.

Example 2.3.4. Similarly, the constraint relation consisting of the two poly-
nomial inequality constraint tuples

(*+y>=1) and ((z—-124+y>=1A22>1)

describes a circle partly overlapping another circle, as illustrated in Fig-
ure 2.3.1. Of course, 22 is an abbreviation for z - z.

In the case of polynomial inequality or linear constraints over the reals,
constraint relations correspond to concepts well known in real algebraic ge-
ometry.

Definition 2.3.6 (Real Semi-Algebraic and Semi-Linear Sets). A set
X C R" is called semi-algebraic if it is definable with polynomial inequality
constraints over the real field R. A set X C R"™ is called semi-linear if it is
definable with linear constraints over Ryy.

Constraint Databases, Queries, and Query Languages 27

Fig. 2.3.1. Figure in the real plane represented by the real polynomial inequality
constraints relation of Example 2.3.4.

Thus, the constraint relations definable with polynomial inequality con-
straints over the reals are precisely the semi-algebraic sets, and the constraint
relations definable with linear constraints over the reals are precisely the
semi-linear sets. Or, put in yet another way: semi-algebraic sets are Boolean
combinations of sets defined by conditions of the form p(z1,...,z,) > 0,
with p a polynomial in the variables zi, ..., x, with integer coefficients;
semi-linear sets are Boolean combinations of sets defined by conditions of the
form a1z + -+ - + apx, > b, where ay, ..., ag, and b are integers.

2.3.3 Testing equality of constraint relations

The representation of a definable relation by a constraint relation is, of course,
not unique. To give a simple example using equality constraints, the singleton
{(c,)} is represented by the constraint tuple z = c Ay = x as well as by the
constraint tuple z = cAy = c.

In general, two constraint relations r and r', interpreted over a struc-
ture M, represent the same unrestricted relation iff the formula VZ(p,. (%)
@ (T)) is true of M. Hence:

Proposition 2.3.7. Equivalence of constraint relations is effectively decid-
able if (and only if) the universal theory of M is effectively decidable.

By the universal theory of M, we mean the set of all first-order sentences in
prenex normal form that are true of M, whose quantifier prefix consists of
universal quantifiers only.

All structures mentioned in Example 2.3.1 have a decidable universal
theory. As a matter of fact, for these structures, the complete theory, i.e., the
set of all first-order sentences true in the structure, is effectively decidable.
This follows from the following two properties of these structures:

1. they admit effective quantifier elimination (cf. Definition 2.2.3), so that,
in particular, every sentence can be converted to a boolean combination
of atomic sentences;

28 Jan Van den Bussche

2. the truth of every atomic sentence in the structure is effectively decidable.

The second property (about atomic sentences) is quite obvious, in the sense
that structures without this property would not be practical to work with.
The first property (about effective quantifier elimination) is by no means
obvious. Still, for all structures mentioned in Example 2.3.1, it is satisfied.
We will see in the next section that effective quantifier elimination is crucial
for the whole constraint database approach to go through.

Ezample 2.3.5. For the real field R, the effective decidability of atomic sen-
tences merely says that one can effectively add, multiply, and compare natural
numbers. Indeed, the only constant symbols in R are 0 and 1, so the only
thing an atomic sentence over R does is compare two natural numbers built
from 0 and 1 using addition and multiplication.

That effective quantifier elimination is possible in the real field is es-
sentially Tarski’s famous decision method for the theory of the reals. A well
known illustration of quantifier elimination over the reals is provided by high-
school mathematics: the formula

Jz(a-2> +b-2+c=0)
is equivalent to the quantifier-free formula

¥ —4-a-¢>0.

2.4 Queries on Constraint Databases

In this section, we combine constraints with the fundamental notion of
database query. We formally define queries to constraint databases, and in-
troduce the relational calculus (augmented with constraints) as a basic con-
straint query language. We also discuss the equivalence with the relational
algebra.

2.4.1 Constraint queries

So far we have defined a constraint database simply as a finite collection of
constraint relations. When querying a database, however, it is useful to give
these relations a name. So we define a database schema as a finite nonempty
set SC of relation names, each with a given arity. A constraint database
with schema SC then becomes a mapping, associating to each relation name
R € SC a constraint relation of the arity given for R. An unrestricted database
with schema SC is defined analogously.

We are now ready to discuss the formal definition of a query on con-
straint databases. In standard relational databases, a query is a mapping,
associating to each database an answer relation. In the present constraint
setting, however, there is a complication. Conceptually, constraint databases

Constraint Databases, Queries, and Query Languages 29

are representations of unrestricted databases (cf. Definition 2.3.5). So we can
think of a query in two ways: on the conceptual level, as a mapping on unre-
stricted (but definable) databases; or on the level of the representations, as
a mapping on constraint databases. Clearly, a query on the representation
level makes only sense if it corresponds to a query on the conceptual level,
as in the following commuting diagram:

constraint
query
constraint output
database D » Q(D) constraint relation
represents represents
unrestricted output
database Dy > (QQo(Do) unrestricted relation
unrestricted
query Qo

The above considerations lead to the following definitions. We start with
the notion of query on the conceptual level:

Definition 2.4.1 (Unrestricted Query). Let M be a structure over the
vocabulary 2. Let SC be a schema, and let k be a natural number. A k-
ary unrestricted query with schema SC over M is a function @, mapping
unrestricted databases D with schema SC to k-ary relations Q(D) on the
universe U of M. This mapping Q can be partial (i.e., Q(D) may be undefined
for some D’s).

Since we are only interested in unrestricted relations that are definable,
we want the following property:

Definition 2.4.2 (Closure). An unrestricted query Q) as in Definition 2.4.1
is called closed if, for each D on which Q is defined, and which is definable
using M-constraints, the relation Q(D) is also definable using M-constraints.

We next turn to queries on the representation level:

Definition 2.4.3 (Constraint Query). Let {2 be a vocabulary. Let SC be a
schema, and let k be a natural number. A k-ary constraint query with schema
SC over (2 is a function @), mapping constraint databases D with schema SC
over (2, to k-ary constraint relations Q(D) over (2. This mapping Q) can be
partial.

We do not want a constraint query to map two different constraint repre-
sentations of a same unrestricted database to constraint relations representing
different unrestricted relations. So we want at least the following property:

Definition 2.4.4 (Consistency). A constraint query Q) as defined in Defi-
nition 2.4.3 is called consistent if there exists an unrestricted query Qo such

30 Jan Van den Bussche

that for any constraint database D and any unrestricted database Dg, if D
represents Dy, then Q(D) is defined if and only if Qo(Do) is defined, and in
that case, Q(D) represents Qo(Do). We say in this case that) represents
Qo-

Note that the unrestricted query represented by a consistent constraint
query is uniquely defined, and that it automatically satisfies the closure con-
dition of Definition 2.4.2.

Ezxample 2.4.1. Let us illustrate the above definitions in the concrete context
of polynomial inequality constraints over the real field R. Fix SC to consist
of a single relation name T of arity 3. So a definable database consists of a
single semi-algebraic set in R?.

Define the following 2-ary constraint query): given a constraint database
D with D(T) = {41,...,¥nm}, consider the formula

X = E'l‘g(l[]lvv’(/JM) .

Since R admits effective quantifier elimination, we can compute from x a
quantifier-free formula ¢, in the variables z; and z2, equivalent to x over R.
We then transform y into disjunctive normal form:

XENV:---Vy.

Then define Q(D) := {v1,...,7¢}.

This constraint query () is consistent; it represents the 2-ary unrestricted
query mapping each semi-algebraic set in R® to its projection on the z;zs-
plane.

To give an example of a 1-ary unrestricted query that is not closed, con-
sider the one that maps every D to Z. This query is not closed because Z is
not a semi-algebraic set in R.

Finally, to give a (rather contrived) example of a constraint query that
is not consistent, consider the one that maps each D to the singleton set
consisting of that constraint tuple in D(T') that has the largest sum of
all constants appearing in it (if there is no unique such tuple, the con-
straint query is undefined on D). Indeed, consider the constraint databases
Dy and Dy with D1(T) = {0 < 1 Axp < 3, 1 < 1 Ay < 4} and
Dy(T) ={0 < z1 Azy <3, 2 < 1 Axy < 4}. Both represent exactly the
same unrestricted relation, namely the interval (0,4). However, on D; the
output of the query is {1 < 21 Az < 4}, while on D, it is {2 < 21 Azy < 4}.
These two singleton constraint relations represent different unrestricted re-
lations. Hence, our constraint query cannot possibly represent some unre-
stricted query, as the latter, being a mapping, cannot have two different
results on the same input.

2.4.2 The Relational Calculus with Constraints

The relational calculus (first-order logic), with a given a class of constraints,
constitutes a very basic constraint query language, which we next introduce.

Constraint Databases, Queries, and Query Languages 31

For more background on the relational calculus in the setting of standard,
non-constraint databases, we refer to textbooks on database theory, as well
as to the Introduction (Chapter 1).

We fix some schema SC in what follows.

Definition 2.4.5 (Relational Calculus). Let {2 be a vocabulary. A rela-
tional calculus formula over {2 is a first-order logic formula over the expanded
vocabulary (£2,SC) obtained by expanding 2 with the relation names (viewed
as predicate symbols) of the schema SC. This class of formulas is denoted by
FO(£2,SC), or simply FO(£2) if SC is understood from the context.

The cases 2 = (+,-,0,1,<) and 2 = (+, <, 0, 1) occur quite often in work
on constraint query languages, and a specific notation is in use for them:

Definition 2.4.6 (FO + PoLy and FO + LiN). FO + Povy will denote the
class FO(+,-,0,1,<), and FO + LIN the class FO(+, <,0,1).

Example 2.4.2. With R a relation name of arity 2, the following is a formula
in FO 4+ LN

R(l’1,1'2) \ Ei:U('R(mlyy) A R(y,l‘2) A (1‘1 + 22 < y) A (1‘2 -y < 0)))
and the following is a formula in FO + PorLy:
R(w1,x2) V 3y(R(z1,y) A R(y, 22) A (21 - 22 < y) A (22 — y° < 0)) .

These are purely syntactical examples; the semantics of relational calculus
formulas is defined next.

Given an 2-structure M, relational calculus formulas over 2 express total
(i.e., everywhere defined) unrestricted queries over M in the obvious manner:

Definition 2.4.7 (Unrestricted Relational Calculus Queries). Fiz an
2-structure M = (U, 2). A FO(2,5C) formula ¢(x1,...,x) expresses the
k-ary unrestricted query Q@ over M defined as follows. Given an unrestricted
database D with schema SC over M, we can expand M to a structure
(M,D) = (U, 2,D) over the expanded vocabulary (£2,SC) by adding the
interpretation D(T), for each relation name T € SC in D, to M. Then

Q(D) :={(a1,...,a) €U* | (M, D) = p(ar,...,ar)} .

The above definition raises a most basic question. In which cases do we
know that the unrestricted query expressed by a relational calculus formula
is closed? And if it is, can we find a corresponding constraint query that is
effectively computable? The following proposition answers this question. Al-
though from a purely mathematical point of view it is a perfectly disguised
triviality, it is at the same time the most important proposition of this chap-
ter. Indeed, it encapsulates the fundamental mechanism lying behind the use
of first-order logic as a constraint query language.

32 Jan Van den Bussche

Proposition 2.4.8. If, and only if, M admits effective quantifier elimina-
tion, every relational calculus formula ¢ expresses a consistent, effectively
computable, total constraint query, that represents the unrestricted query ex-
pressed by p.

Proof. Assume M indeed admits effective quantifier elimination. Given ¢,
define the following constraint query). Given a constraint database D,
replace in ¢ every occurrence of an atomic formula of the form R(Z), with
R € SC arelation name of the schema, by the formula corresponding to D(R)
(we might first have to rename some variables used in ¢ to avoid clashes). This
yields a first-order formula x which is purely over the constraint vocabulary
2 alone; no relation names of the schema occur in x. By our assumption, x is
equivalent, in M, to a quantifier-free formula 1, which we may assume to be
in disjunctive normal form ¢ V- -- V1. Then define Qo (D) := {¢n,..., ¢}

Conversely, assume every relation calculus formula expresses a constraint
query as stated in the proposition. Then we can effectively eliminate quanti-
fiers in M as follows. Take a formula of the form Jy,¢(y1,-..,y,) where we
may assume) to be quantifier-free and in disjunctive normal form 1 V- - V).
Consider a schema SC having a relation name R of arity n, and consider a
constraint database D where D(R) = {t1,...,%¢}. Finally, consider the re-
lational calculus query ¢ = Jy1 R(y1,. . .,yn). By assumption, ¢ expresses an
effectively computable, total constraint query @, representing the semantics
of . So, applying @ to D yields a constraint relation r = {v1,...,7p}, such
that r represents the relation {(az,...,a,) | M = Iyiv(y1,a2,...,a,)}. In
other words, the equivalence

Vyz - - Vyn(Fyi & (V- V)

holds in M, so that (y1 V ---V ;) is a quantifier-free formula equivalent to
Jy1¢ and effectively computable from it, as had to be shown. O

Example 2.4.3. Let us illustrate the above using FO + PorLy over R. Assume
that the schema consists of one binary relation name R, and consider the sim-
ple FO + PoLy formula ¢(y) = 3zR(z,y). Let D be the constraint database
in which D(R) equals the singleton {y = z?}. To evaluate ¢ on D, we replace
the occurrence of R in ¢ by its defining formula to get

X(y) =3y = 27) .
This formula is equivalent, in R, to the quantifier-free formula
Ply)=y=0Vy>0,

which is already in disjunctive normal form. Hence we can define the result
of the constraint query @, defined by ¢ applied to D as Q,(D) = {y =
0,y > 0}.

Note that this example would fail if we would omit the < predicate,
i.e., if we work in the constraint structure (R, +,-,0,1). In this context the

Constraint Databases, Queries, and Query Languages 33

unrestricted query expressed by ¢ would not be closed. Not surprisingly, the
structure (R, +,-,0,1) does not admit quantifier elimination either.

2.4.3 Computational Feasibility

The proof of Proposition 2.4.8 describes a crude but effective evaluation mech-
anism for constraint relational calculus queries ¢. Ignoring the conversion to
DNF at the end, computing the result of ¢ on a constraint database D is
reduced to simply eliminating the quantifiers from a formula obtained by
“plugging” the contents of D in the appropriate slots in . Denote this for-
mula by plug(D, ¢). We can now make the following two simple but important
observations:

1. The size of plug(D, ¢) is linear in the size of D.

2. Because each constraint relation of D is quantifier-free, the number of
quantifiers occurring in plug(D,) is the same as in ¢, and in particular,
is independent of D.

Why is this important? For most structures, quantifier elimination is usu-
ally computationally expensive. Typically used algorithms require exponen-
tial, or even double exponential, time in the worst case. However, a finer
analysis often reveals that this exponential behavior can be confined to an
exponentiality in the number of quantifiers to be eliminated only. More pre-
cisely, quantifier elimination procedures can often be made to run, on an
input formula x of size n, in time p(n) - e(q), where p is a polynomial in n,
and e is an exponential, or even double exponential, function in ¢, where q is
the number of quantifiers occurring in .

Let us now apply this to the situation where x is plug(D, ¢). From the
previous two observations, we get that n is proportional to the size of D, and
that ¢, and hence also e(g), is a constant independent of D. In other words,
evaluation of a constraint query ¢ can be done in polynomial time.

The above considerations actually apply to all the structures mentioned
in Example 2.3.1. So, we have the following definition and proposition:

Definition 2.4.9 (Data Complexity). Let Q be a total constraint query,

and let f be a function on the natural numbers. Then we say that the data

complexity of @ is O(f) in time if there is an algorithm that computes, given

as input a constraint database D of size n, the output Q(D) in O(f(n)) time.
We can similarly define data complezity in space.

Proposition 2.4.10. Quer any structure mentioned in Example 2.3.1, every
constraint relational calculus query has polynomial-time data complexity. 0O

We point out that sharper complexity bounds can be derived for various
specific structures; these will be discussed in Chapters 4 and 7.

34 Jan Van den Bussche
2.4.4 The Relational Algebra with Constraints

The classical equivalence between the relational calculus and the relational
algebra in standard relational databases, carries over very easily to constraint
databases. In this section, we show how. Our presentation will be rather brief,
because, by and large, the connection between algebra and calculus in the
constraint model does not involve any other fundamental insights beyond
those already involved in the connection between algebra and calculus in
standard relational databases.

As always, we fix a vocabulary 2, a structure M over (2, and a database
schema SC. The relational algebra expressions (RAEs), and their arities, are
inductively defined as follows. Let I/ denote the domain of M.

— U is a RAE of arity 1.

— Each relation name R € SC is a RAE. Its arity is given by SC.

— If e; and ey are RAEs of arities k; and ko respectively, then the cartesian
product (e1 X e3) is a RAE of arity ky + ko, and, provided that k; = ko, the
union (e Uey) and the difference (ex — ea) are RAEs of arity k.

— If e is a RAE of arity &, and 41, ..., i, € {1,...,k}, then the projection
Tiy,...ip (€) is a RAE of arity p.

— Finally, if e is a RAE of arity k, and 6 is a quantifier-free formula over (2
on the variables z1, ..., =, then the selection og(e) is a RAE of arity k.

A RAE e of arity k defines a k-ary unrestricted query @, and a total com-
putable k-ary constraint query), in the following straightforward manner.
To be able to deal effectively with projection, we have to assume (as in the
relational calculus, cf. Proposition 2.4.8) that M admits effective quantifier
elimination. Let D be an unrestricted database with schema SC, and let D’
be a constraint database with schema SC.

— Ifeis U, then Q.(D) :=U, and Q. (D') := {z1 = =1 }.

—Ifeis